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RECOMMENDER SYSTEMS

Enable content discovery
by learning the user preferences and
exploiting the wisdom of the crowd.
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EVALUATION METRICS

The proportion of items, across the catalog, which are

candidates for recommendations.

Proportion of items which ever get recommended.
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UNIQUENESS

13

EVALUATION METRICS

» zalando



14

EVALUATION METRICS

» zalando




15

EVALUATION METRICS

M zalando




16

ARE UKNN AND IKNN
REALLY THAT DIFFERENT?

A COMPARATIVE ANALYSIS
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THE ALGORITHMS

USER BASED
COLLABORATIVE
FILTERING
(UKNN)

*Find similar users

*word of mouth

* The neighbours paradigm
*Scales with number of users

ITEM-BASED
COLLABORATIVE
FILTERING
(IKNN)

Find similar items
eScalable
*Widely used
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LESSONS LEARNED

- One size fits all is not true, never, ever!

- Use many metrics, even if you don’t optimise for them

- They help understanding what is the model doing

- Use various datasets (if you want to publish a paper) - Do results generalise?

- Understand what is the best proxy or dataset for your evaluation goal.
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CONCLUSIONS

- User-based (UKNN) and item-based (UKNN) collaborative filtering
algorithms have a high inverse correlation between popularity and diversity.

- Smaller neighbourhood sizes (for UKNN) lead to more unique, less popular,
and more diverse recommendations.

- Recommend a common set of items at large neighbourhood sizes.

- Matrix factorisation approach (WMF) leads to more accurate and diverse
recommendations, while being less biased toward popularity.

- Item-based collaborative filtering (IKNN) has significantly better catalog
coverage.
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THE DATA )
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DATASET

MOVIELENS -
HETREC

LASTFM - HETREC

TRAINING DATA
TESTING DATA

10 FOLD
CROSSVALIDATION

EXPERIMENT DESIGN

THE MODELS ) EVALUATION )
UKNN ACCURACY
IKNN BEYOND
WM E ACCURACY

SIGNIFICANCE

ACCURACY
OPTIMISATION

zalando



THE DATASETS

Dataset |# users|# items|# ratings|Mean (std. dev.)|Mean (std. dev.)|Sparsity
ratings per user |ratings per item

LASTFM - HETREC

29

FB 1,428 | 5,846 | 64,612 45 (49) 11 (26) 0.9923
LastFM| 1,864 | 6,945 | 82,037 44 (7) 12 (32) 0.9937
ML 2,040 | 7,459 | 374,352 183 (187) 50 (110) 0.9754
Table 1: Summary statistics for the datasets after pre-processing.
FACEBOOK
DATASET MUSIC / BANDS

MOVIELENS -

HETREC

MOVIES

MUSIC / BANDS
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USER BASED
COLLABORATIVE
FILTERING
(UKNN)

* Find similar users

* word of mouth

* The neighbours paradigm

* Scales with number of users
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THE ALGORITHMS

ITEM-BASED
COLLABORATIVE
FILTERING
(IKNN)

* Find similar items
e Scalable
* Widely used

MATRIX
FACTORISATION
(WEIGHTED)

 Latent Factors

* Really good accuracy
» Scalable

 Parallel computing

* Very accurate
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EVALUATION METRICS

- PRECISION: Out of the items recommended, how many are good recommendations?
- RECALL: How many of the items the user likes are being recommended?”?

- F-1: Mixes the properties of Precision and Recall into a single metric

- DIVERSITY: How different are the items in the list of the recommendations?

 POPULARITY: How popular are the items recommended
- (PER USER) ITEM COVERAGE: Proportion of items that are candidates for recommendations
- CATALOG COVERAGE: The proportion of items of the catalog that ever get recommended

- UNIQUENESS: How many items in two recommendation lists are different from each other?

31 zalando



RESULTS
Algorithm Pop [CCov (%)|UICov (%)|DIV |[PRC|RCL|[F-1
Most Popular [0.500 | 0.684 [ 98.957* [0.706%[0.066]0.089[0.076
FB |UKNN (60) [0.310 | 5.132 16.049 [0.711 [0.136(0.181(0.156*
IKNN (300) |0.251*%| 27.386 | 40.478 |0.672*%|0.132(0.182|0.153*
WMF (20,20)|0.254*| 7.030 | 98.957* |0.747 (0.155(0.202|0.176
Most Popular [0.507 [ 0.374 | 98.675% [0.654 [0.068[0.073[0.070
LastFM|UKNN (50) [0.286 | 7.790 9.709 [0.730 [0.167[0.183(0.175*
IKNN (300) [0.239 | 30.194 | 38.815 |0.714 |0.180|0.201|0.1907"
WMF (20,50)[0.234 5.37 98.675* 10.788 (0.180(0.196(0.188**
Most Popular [0.282 | 0.724 [ 99.464* [0.490 [0.221[0.082[0.120
ML |UKNN (140) |0.104 | 1.823 46.130 |0.519 |0.294|0.110(0.160*
IKNN (300) |0.095 | 3.365 50.611 |0.527 |0.284(0.106(0.154*
WMF (25,40)|0.079 | 8.861 99.464* 10.603 |0.344(0.133[0.191

Table 2: Comparison of the performance of the recommendation algorithms. Bold num-
bers indicate optimal algorithm parameter values (neighbourhood size for UKNN and
[KNN, number of factors and number of iterations for WMF). Pairs of non statistically

significant results are annotated with the symbols * or ™.
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RESULTS - POPULARITY BIAS
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Figure 1: Recommendation frequency of the 60 most popular items. For clarity, UKNN,
IKNN and WMF' are approximated by a 5-degree polynomial function.
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RESULTS - OTHER PROPERTIES

*Accuracy: WMF performs best in terms of F-1 for the Facebook and MovielLens
datasets, while the accuracy of the UKNN and IKNN algorithms are similar.

‘Per-user item coverage
*WMF algorithm considers almost every item as a candidate (UICov > 98%).

* The UKNN algorithm (by definition) only items which are in the user’s neighbourhood
can be considered as recommendation candidates. IKNN was seen to outperform

UKNN in all datasets in terms of

*Coverage: the IKNN algorithm, performs significantly better than the other algorithms,
covering up to 30% of the item catalog - Up to 6 times more items than the UKNN and

WMF algorithms.

Diversity: the WMF algorithm performs better, with a performance around 9% higher

on average than the best neighbourhood-based approach
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RESULTS - CONSISTENCY

*Important to evaluate in different datasets.

* MovielLens dataset, (3 times more dense than the Facebook and LastFM
datasets), the catalog coverage of the IKNN algorithm is ~ 10 times smaller than

for the LastFM and Facebook datasets.
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