Word Embeddings for IR

Debasis Ganguly

ADAPT Centre, School of Computing, Dublin City University Dublin 9, Ireland.

September 26, 2016

Overview

Introduction

Generalized Language Model

Proposed Method Evaluation

Word Embeddings for Relevance Feedback

Background KDE based Relevance Feedback Word Compositions Evaluation

Documents as sets of vectors

Motivation for Proposed Approach

Future Directions

A ■

What is Word Embedding?

- Represent every word as a vector in some *abstract* space.
- What are the characteristics of this space?
 - ► Two terms *t*₁ and *t*₂ are *close* if and only if they share similar contexts.
 - Paris is close to France. Why?
 - If Paris is close to France, then Berlin will be close to Germany. Why?

Word Embeddings for Initial Retrieval

- Limitations:
 - Term association: Has been an intriguing problem in IR.
 - Vocabulary mismatch: Different terms may be used in two documents that are about the same topic, e.g. "atomic" and "nuclear" etc.
 - Terms used in query are different from those in its relevant documents.
 - Standard retrieval models assume term independence.
- Proposed Solution:
 - Generalized Language Model, which includes the term transformation in the sampling process by using distances between embedded vectors.

Word Embeddings for Relevance Feedback (RF)

- Limitations:
 - Use statistical co-occurrence of words in top ranked docs with query terms.
 - No way to take into account multi-word 'concepts', e.g. relating 'osteoporosis' to 'bone disease' beyond pre-defined phrases.
 - Noisy expansion terms can lead to 'query drift' and hence degraded IR effectiveness after RF.
- Proposed Solution:
 - Semantic similarity captured by distance measure between word vectors.
 - Integrate semantic similarity with statistical co-occurrences between terms for RF.
 - Exploit term compositionality to extract meaningful concepts to use in RF.

Introduction

Generalized Language Model Word Embeddings for Relevance Feedback Documents as sets of vectors **Future Directions**

Word Embeddings for Multi-modal IR

Albert Einstein

Special relativity

fpecial relativity implies a wide range of consequences, which have been experimentally worthed.²⁷ arcluding length contraction, time dilation, including mass, mass-energy,

The Einstein Theory of Relativity

The Brancis Theory of Relativity (1971) is a specified device by they and base Frencher and released to Frencher Index

The Penchers litter botage from the German predecessor, Die Grundlager der Einsteinanten Relativitäts Theore P directet by Hanns Hatter Kombium, für inclusion into twer filt

æ

・ロン ・回と ・ヨン ・ヨン

Word Embeddings for Multi-modal IR

- Multi-modality: A document comprised of text, images, speech, video, e.g. a typical Wikipage.
- Given a unimodal (e.g. text/image) query or more generally a multi-modal query, how can one retrieve relevant multi-modal documents?
- Standard approach:
 - Index the different modalities separately. Compute similarities individually and fuse.
 - Problems: Different retrieval strategies. How to combine the scores?
- Vector Embedding Approach: Joint embedding of categorical data, such as text, and continuous data such as image features into vectors of reals.
- What we need: A similarity function between sets of vectors.

Proposed Method Evaluation

A Generalized Language Model

- Takes into account term *tansformations* in the sampling method.
- Two types of term transformations (let t be an observed query term):
 - ► **Document Sampling:** Pick a term *t*′ from *d* and then change it to *t*.
 - ► **Collection Sampling:** Pick a term t' from collection and then change it to t.
- Document sampling transformation measures how well does a term t contextually fits within a document.
- Sampling from collection aims to alleviate vocabulary mismatch.

- 4 同 6 4 日 6 4 日 6

Proposed Method Evaluation

A schematic diagram

Figure: Schematics of generating a query term t in our proposed Generalized Language Model (GLM). GLM degenerates to LM when $\alpha = \beta = 0$.

イロン イヨン イヨン イヨン

Proposed Method Evaluation

Dataset

Table: Dataset Overview

Document Collection	Document Type	#Docs	Vocab Size	Query Fields	Query Set	Query Ids	Avg qry length	Avg # rel docs	Dev Set	Test Set
TREC Disks 4, 5	News	528,155	242,036	Title	TREC 6 ad-hoc TREC 7 ad-hoc TREC 8 ad-hoc TREC Robust	301-350 351-400 401-450 601-700	2.48 2.42 2.38 2.88	92.2 93.4 94.5 37.2	√	√ √ √
WT10G	Web pages	1,692,096	1,659,231	Title	TREC 9 Web TREC 10 Web	451-500 501-550	3.46 4.62	52.3 67.2	~	~

< □ > < □ > < □ > < □ > < □ > .

æ

			Metrics	
Topic Set	Method	MAP	GMAP	Recall
	LM	0.2148	0.0761	0.4778
TREC-6	LDA	0.2192	0.0790	0.5333
	GLM	0.2287	0.0956	0.5020
	LM	0.1771	0.0706	0.4867
TREC-7	LDA	0.1631	0.0693	0.4854
	GLM	0.1958	0.0867	0.5021
	LM	0.2357	0.1316	0.5895
TREC-8	LDA	0.2428	0.1471	0.5833
	GLM	0.2503	0.1492	0.6246
	LM	0.2555	0.1290	0.7715
Robust	LDA	0.2623	0.1712	0.8005
	GLM	0.2864	0.1656	0.7967

200

æ

(日) (四) (三) (三) (三)

Parameter Variation Effects

(c) TREC-8 (d) Robust

Figure: GLM parameters' (α and β) effect on MAP.

500

2

< € ⇒

Background KDE based Relevance Feedback Word Compositions Evaluation

Relevance Model

- Standard approach to relevance feedback with a generative model.
- Estimates a distribution P(w|Q), where w is a term in the set of top docs and Q is the set of query terms.
- Two versions of generative model.
 - **iid**: Terms generated from the whole set of top documents.
 - conditional: Terms generated from individual top documents with prior probabilities.

Background KDE based Relevance Feedback Word Compositions Evaluation

Two variants of the Relevance Model

イロン イヨン イヨン イヨン

Background KDE based Relevance Feedback Word Compositions Evaluation

Kernel Density Estimation

- Estimate a distribution that generates the given data.
- Place Gaussians centered around the data points.
- Combine the Gaussians to get a function peaked at the data points.

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^{nh} K(\frac{x - x_i}{h})$$

▲ □ ► < □ ►</p>

Background KDE based Relevance Feedback Word Compositions Evaluation

One dimensional KDE

- Query vector embedded words are the data points.
- Objective: Estimate the probability distribution function P(w) given the query terms (word vectors).
- ► High in the neighborhood (of ℝ^p) around query wvecs → high P(w) values for terms semantically related to query.
- Low away from neighborhood around query wvecs → Terms, semantically unrelated to the query terms, have low P(w) = → (≥ → ≥ → ∞)

Background KDE based Relevance Feedback Word Compositions Evaluation

One dimensional KDE (Weighted)

- Put a weight α_i as a coefficient for each kernel function centered around a data point.
- Define $\alpha_i = P(w|D)P(q_i|D)$.
- Define kernel: $K(\frac{w-q_i}{h}) = \mathcal{N}(\frac{w}{h}, \frac{q_i}{h}, \sigma).$
- Acts as generalized RLM (iid)

$$f(w,\alpha) = \frac{1}{k} \sum_{i=1}^{k} \alpha_i \mathcal{K}(\frac{w-q_i}{h}) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\frac{w}{h}, \frac{q_i}{h}, \sigma)$$
$$= \sum_{i=1}^{k} P(w|D) P(q_i|D) \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(w-q_i)^T(w-q_i)}{2\sigma^2 h^2})$$

・ロン ・回と ・ヨン ・ヨン

Background KDE based Relevance Feedback Word Compositions Evaluation

Two dimensional KDE

- Word vectors of query terms is one dimension.
- The second dimension is the rank (or similarity) of the documents.
- Objectives: More contribution from:
 - terms that are *closer* to query terms.

<ロ> <同> <同> <同> < 同>

< ≣ >

 documents that are ranked higher.

Background KDE based Relevance Feedback Word Compositions Evaluation

Two dimensional KDE

- Choose kernels as bivariate Gaussians: $K(\frac{w-q_i}{h}) = \mathcal{N}(\frac{w}{h}, \frac{q_i}{h}, \sigma).$
- Data points: $\mathbf{x}_{ij} = (q_i, D_j)$.
- Put a weight α_i as a coefficient for each kernel function centered around a data point.

• Define
$$\alpha_{ij} = P(w|D_j)P(q_i|D_j)$$
.

Acts as generalized RLM (conditional).

$$f(\mathbf{x}, \alpha) = \sum_{i=1}^{k} \sum_{j=1}^{M} \frac{P(w|D_j)P(q_i|D_j)}{2\pi\sigma^2} \exp(\frac{(w-q_i)^2 + (P(w|D_m) - P(q_i|D_j))^2}{-2\sigma^2h^2})$$

Background KDE based Relevance Feedback Word Compositions Evaluation

Vector Addition for Compositionality (Motivation)

- Composition of two (or more) words can lead to a different concept.
- Terms German and airlines may have high co-occurrence scores with query terms.
- Does not necessarily mean that Lufthansa will get a high score.

・ロト ・回ト ・ヨト

Background KDE based Relevance Feedback Word Compositions Evaluation

Composition in KDE Models

- Add a composed point as a pivot point.
- Note how the shape of the function can change.
- Terms (e.g. Lufthansa) that are close to the concept of the composed terms get high likelihood.

・ロト ・回ト ・ヨト

Background KDE based Relevance Feedback Word Compositions Evaluation

Parameter tuning on the TREC-6 development set

Figure: Effect of varying σ (*h* fixed to 1) for KDE feedback models on the TREC 6 dataset.

<ロ> <同> <同> <同> < 同>

- < ≣ →

Results on TREC ad-hoc task

Dataset	Method	wvec		Metrics	
		cmpos	MAP	GMAP	P@5
	LM	-	0.2179	0.0839	0.4040
	RLM	-	0.2280*	0.0871*	0.4680* [‡]
TDEC 6	1d KDE	no	0.2307*	0.0842*	0.4359*
I KEC 0	1d KDE	yes	0.2349*	0.0872*	0.4239
	2d KDE	no	0.2369* [†]	0.0866*	0.4199
	2d KDE	yes	0.2407* ^{†‡}	0.0908* ^{†‡}	0.4640*‡
	LM	-	0.1787	0.0830	0.4040
	RLM	-	0.1953*	0.0908*	0.4160*
TDEC 7	1d KDE	no	0.2012*	0.0913*	0.4239*
I KEC /	1d KDE	yes	0.2107*	0.0938*	0.4440*†
	2d KDE	no	0.2109*†	0.0935*	0.4479* [†]
	2d KDE	yes	0.2124* ^{†‡}	0.0943*	0.4520* ^{†‡}
	LM	-	0.2466	0.1386	0.4560
	RLM	-	0.2445	0.1448	0.5079
TDEC 0	1d KDE	no	0.2420	0.1510	0.5160
TINEC 0	1d KDE	yes	0.2599	0.1539	0.5240
	2d KDE	no	0.2648*†	0.1583	0.5240
	2d KDE	yes	0.2741* ^{†‡}	0.1594* [†]	0.5120
	LM	-	0.2699	0.1723	0.4464
TREC	RLM	-	0.3105*	0.1956*	0.4989*
	1d KDE	no	0.2932	0.1766	0.4808*
Robust	1d KDE	yes	0.3042	0.1847	0.4869*
	2d KDE	no	0.3158*	0.2015*	0.5192* ^{†‡}
	2d KDE	yes	0.3327* ^{†‡}	0.2128* ^{†‡}	0.5071*

Table: Comparison between KDE and the RLM without QE. Parameters are tuned on the TREC 6 topic set.

Background KDE based Relevance Feedback Word Compositions Evaluation

Parameter tuning on the TREC-9 development set

Figure: Effect of varying σ (*h* set to 1) for KDE feedback models on the TREC 9 topic set.

・ロト ・回ト ・ヨト

3

Background KDE based Relevance Feedback Word Compositions Evaluation

Results on TREC Web task

Dataset Metho		wvec	Metrics				
		cmpos	MAP	GMAP	P@5		
	LM	-	0.1814	0.0798	0.2839		
	RLM	-	0.1853	0.0571	0.2840		
	1d KDE	no	0.1983* [†]	0.0833*†	0.2760		
I KEC 9	1d KDE	yes	0.1995*†	0.0848*†	0.3000		
	2d KDE	no	0.2042*†	0.0842*†	0.3040		
	2d KDE	yes	0.2046* [†]	0.0844*†	0.3120 * [†]		
	LM	-	0.1625	0.0901	0.3224		
	RLM	-	0.1766*	0.0835	0.3592		
	1d KDE	no	0.1761*	0.0908	0.3932*†		
TREC 10	1d KDE	yes	0.1792*	0.0934	0.4000*†		
	2d KDE	no	0.1908*†	0.0956	0.3825		
	2d KDE	yes	0.1931* ^{†‡}	0.0992	0.3959*†		

Table: Comparisons between KDE feedback methods (without QE) on ____

Results with Query Expansion

Dataset	Method	Parameters			Metrics	
		М	Ν	MAP	Recall	P@5
	k-NN	n/a	20	0.2175	0.4461	0.3520
TREC 6	RLM	20	70	0.2634+	0.5368	0.4360
	1d KDE	10	80	0.2519	0.5311	0.4520
	2d KDE	10	80	0.2668 [†]	0.5420 ^{⊺‡}	0.4640 ^{T‡}
	k-NN	n/a	20	0.1614	0.4816	0.3680
TREC 7	RLM	20	70	0.2151	0.5432	0.4160
	1d KDE	10	80	0.2351 [†]	0.6001 [†]	0.4425 [†]
	2d KDE	10	80	0.2380	$0.6108^{\dagger\ddagger}$	0.4400
	k-NN	n/a	20	0.2320	0.6174	0.4520
TREC 8	RLM	20	70	0.2701	0.6410	0.4760
	1d KDE	10	80	0.2746	0.6749†	0.4888
	2d KDE	10	80	$0.2957^{\dagger\ddagger}$	0.6887^{\dagger}	0.5120 ^{†‡}
	k-NN	n/a	20	0.2575	0.6265	0.4505
TREC Rb	RLM	20	70	0.3304 [‡]	0.8559	0.4949
	1d KDE	10	80	0.3228	0.8725	0.4929
	2d KDE	10	80	0.3456†‡	0.8772 ^{†‡}	0.5152 ^{†‡}
	k-NN	n/a	10	0.1794	0.6623	0.2512
TREC 9	RLM	ź0	70	0.1930	0.6755	0.3233
	1d KDE	10	80	0.1984	0.6851	0.3360
	2d KDE	10	80	$0.2145^{\dagger\ddagger}$	0.6878	0.3562 ^{†‡}
	k-NN	n/a	10	0.1681	0.7284	0.3123
TREC 10	RLM	20	70	0.1759	0.7386	0.3347
	1d KDE	10	80	0.2192 [†]	0.7499	0.4004 [†]
	2d KDE	10	80	0.2213^{\dagger}	0.7502	0.4204^{\dagger}

Table: Results of KDE feedback methods with QE. Parameters: M (#fdbk docs) and N (#expansion terms).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation for Proposed Approach

Documents as term vectors

- Terms as dimensions of a document vector (forms an inner product space).
- Inner product d.q gives the similarity between document and query.

Debasis Ganguly Word Embeddings for IR

Motivation for Proposed Approach

- 4 同 ト 4 ヨ ト 4 ヨ ト

Documents as sets of word embedded vectors

- ► Each document: A set of real-valued vectors in p dimensions, D = {x_i}^{|D|}_{i=1}, x_i ∈ ℝ^p.
- Need: Generalized distance (inverse similarity) measures, d(X, Y), where X, Y are sets of vectors, which satisfy d(X, X) = 0, d(X, Y) = d(Y, X) and d(X, Y) + d(Y, Z) ≥ d(X, Z).

Motivation for Proposed Approach

Documents as sets of word embedded vectors

Two distance metrics investigated:

• Average inter-distance:

 $d(X, Y) = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} d(x, y)$, where d(x, y) is L2 or Euclidean distance between vectors x and y.

► Hausdorff Distance: $d(X, Y) = \max(\max_{x \in X} \min_{y \in Y} d(x, y), \max_{y \in Y} \min_{x \in X} d(x, y))$

Motivation for Proposed Approach

Illustrative Examples

Figure: Two example scenarios of single-topical documents, where the document on the left has a higher similarity to the query than the document on the right.

・ロト ・回ト ・ヨト

Motivation for Proposed Approach

Illustrative Examples

Figure: Two example scenarios where documents are multi-topical, i.e. K-means clustering shows 4 distinct clusters. Document on the right is more similar to the query.

Image: A mathematical states and a mathem

Motivation for Proposed Approach

Method Details

- A document is treated as a mixture model of Gaussians of the observed constituent words.
- A query is treated as the observed points drawn from the underlying mixture distribution of a document.
- The query likelihood is then given by the probability of sampling the observed query points from the mixture distribution.

$$sim(q,d) = \frac{1}{K|q|} \sum_{i} \sum_{k} q_{i} \cdot \mu_{k}$$
(1)

 This is combined with the text based query likelihood (language model based) to obtain the final query likelihood.

$$P(d|q) = \alpha P_{LM}(d|q) + (1-\alpha)P_{WVEC}(d|q)$$
(2)

Motivation for Proposed Approach

Practical Considerations for Implementation

- Individually estimating the Gaussian mixture model for each document is time consuming, and slows the indexing process.
- Solution: Cluster the entire vocabulary with an EM based clustering algorithm such as K-means.
- Each term is thus mapped to a cluster id.
- Induce the per-document clusters by grouping together words in a document with the same cluster id and find the centre of each group C_k.

$$\mu_k = \frac{1}{|C_k|} \sum_{x \in C_k} x, C_k = \{x_i : c(w_i) = k\}, i = 1, \dots, |d| \quad (3)$$

Dataset	Nethod Parameters			Metrics				
		Clustered	#clusters	α	MAP	GMAP	Recall	P@5
TREC-6	LM LM+wvecsim _{one_cluster} LM+wvecsim _{no_cluster}	n/a yes no	n/a 1 n/a	n/a 0.4 0.4	0.2303 0.2355 0.2259	0.0875 0.0918 0.0827	0.5011 0.5058 0.5000	0.3920 0.3920 0.3600
	$LM+wvecsim_{kmeans}$	yes	100	0.4	0.2345	0.0906	0.5027	0.4040
TREC-7	$\begin{array}{l} LM \\ LM+wvecsim_{\rm one_cluster} \\ LM+wvecsim_{\rm no_cluster} \\ LM+wvecsim_{\rm kmeans} \end{array}$	n/a yes no yes	n/a 1 n/a 100	n/a 0.4 0.4 0.4	0.1750 0.1773 0.1664 0.1756	0.0828 0.0851 0.0803 0.0874	0.4803 0.4897 0.4863 0.4916	0.4080 0.3960 0.3640 0.3840
TREC-8	$\begin{array}{l} LM\\ LM+wvecsim_{\rm one_cluster}\\ LM+wvecsim_{\rm no_cluster}\\ LM+wvecsim_{\rm kmeans} \end{array}$	n/a yes no yes	n/a 1 n/a 100	n/a 0.4 0.4 0.4	0.2466 0.2541 [†] 0.2473 0.2558 [†]	0.1318 0.1465 0.1396 0.1468	0.5835 0.6017 0.5994 0.6017	0.4320 0.4440 0.4520 0.4720
Robust	$\begin{array}{l} LM \\ LM+wvecsim_{\rm one-cluster} \\ LM+wvecsim_{\rm no_cluster} \\ LM+wvecsim_{\rm kmeans} \end{array}$	n/a yes no yes	n/a 1 n/a 100	n/a 0.4 0.4 0.4	0.2651 0.2690 0.2642 0.2804 [†]	0.1710 0.1701 0.1646 0.1819	0.7803 0.7905 0.7900 0.8010	0.4424 0.4465 0.4485 0.4687

Table: Results of set-based word vector similarities with different settings. K: #clusters, α : weight of the text based query likelihood.

Motivation for Proposed Approach

Observations

- Results with word vector based similarities outperform pure text based ones.
- ► K = 100 produces best results for the TREC 8 and the TREC Robust topic sets.
- Show consistent improvements in both recall and precision at top ranks.
- Very fine-grained representation of documents (each constituent word as its own cluster) is not optimal.
- Somewhat surprisingly, K = 1, i.e., each document represented by a single point (the average of all words) produces close results to K = 100.

Embedded Vector based Multi-modal IR

- Use joint embeddings of text and other data type (e.g. images) to automatically augment text documents with semantically related 'vectors'.
- Example: For a given text document, enhance its representative content (for the purpose of more effective search) by augmenting relevant images from the Wikimedia (Wikipedia image collection).

Embedded Vector based Cross-modal and Cross-lingual IR

- Joint embeddings of vectors can be used for cross-lingual search.
- Individual word embeddings for different languages can be aligned with a parallel corpora.
- Document-Query similarity can be measured on these embedded vector space.
- Joint embeddings can also be used for addressing cross-modal information access, e.g. searching for text documents with image query, searching for speech/video with text query and so on.