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                   INTRODUCTION 
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Introduction
Problem formulation: identify and label objects 
on the image (semantic image segmentation)
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Introduction

Existing state-of-the art algorithms: 
● Fully Connected ConvNNs (Long et al, 2015)
● Achieved ~62.7% precision on VOC2011 test 

   Shortcomings: 
● Coarse output (ConvNNs) due to the size of the receptive field,
● ConvNNs are tuned to perform classification rather than segmentation 

problems, i.e. answering the question like 'Which object is present in 
the image' rather than 'which objects and where  are present on the 
image'

● Fails to capture the structure of the image (interaction between pixels) 

 



CRF as RNN 6

Introduction

Solution: Conditional Random Fields (CRFs)
● A form or Markov Random Fields (MRFs), conditional on a global 

observation (image)
● Takes into consideration the structure of the image (Gaussian filters),
● Error function uses Intersect over Union (IoU) metric to estimate 

discrepancy between the model and the ground truth,
● Current implementation: Kraehenbuehl, Koltun (2012)
● Good results, but could be improved further! 
● Hence, this presentation is based on S.Zheng et al (Conditional 

Random Fields as Recurrent Neural Networks, 2015) 
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         END-TO-END LEARNING

              (CRF AS RNN) 
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End-to-End Learning

CRF as RNN: 
● Combines unary (independent) and pairwise (structure) values 

for each pixel:
● ConvNN returns unary values for each pixel
● CRF is embedded within a Recurrent Neural Network (RNN) 

framwork – hence the name: CRFasRNN
● CRFasRNN is used to derive label distribution for each pixel 

based on the image structure (connection between pixels in the 
image)

● Training using Backpropagation Through Time (BPTT)
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End-to-End Learning

CRF as RNN: 
● Feed-forward stage: one unary input from the ConvNN, T 

iterations within CRF-RNN 
● Output of the network is taken only after T iterations: probability 

distribution over every pixel in the image (L labels per N pixels)  
● Objective function: Energy over image 

 

● Loss function: Intersect over Union
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End-to-End Learning
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End-to-End Learning

CRF as RNN: 
● Backpropagation stage: error differentials are 
computed from the IoU loss function

● One of the key contributions of the article: end-to-end 
training. Partial derivatives wrt to weights are 
backprop'd through the CRFasRNN (T times, as usual 
for unfolded RNN) and through ConvNN

● Parameters of CRFasRNN and ConvNN are learnt 
jointly during backprop stage 
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         STRUCTURE OF CRF-RNN
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Structure of CRF-RNN
CRF as RNN takes ConvNN's output (unary values) as the initial 
input and proceeds with the mean-field approximation of the 
underlying label  distribution.

The main job of CRFasRNN is to understand the interaction between 
pixels on the image by extracting features such as color and position. 

The output of CRF is probability distribution over labels in each pixel 
that considers label compatibility, i.e. the structure of the image, 
something that other approaches like ConvNN are not capable of.
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Structure of CRF-RNN

 

CRF as RNN:
– For T iterations:

● For each pixel:
– For each label:

● Message Passing (loop through pixels)
● Filter weighing (loop through filters)
● Compatibility (loop through labels)
● Adding Unary Potentials
● Normalization (loop through labels)
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Structure of CRF-RNN

 

Message Passing:
● Taking variables like RGB and pixel position we obtain 

Gaussian kernels of the pairs of pixels,
● Kernels are then convolved with inputs (unary 

potentials)
● In total, for every label and every pair of pixels there 

are a total of M (here M=2: bilateral and spatial) 
filters/kernels stored 

~Q=∑ j≠k
km

( f i , f j)Q j(l)
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Structure of CRF-RNN

 

Filter Weighing:
● All M filters are weighed and convolved:

k (f i , f j)=w1 exp (
−|p i−p j|
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Structure of CRF-RNN

 

Compatibility Transform:
● For each label in every pixel weighed filter outputs are 

convolved with a parameter μ(l,l')

● This parameter penalizes assignment of different 
labels to pixels with similar properties

● In CRFasRNN setting this parameter is learned rather 
than fixed

Q̂(l)=∑l≠ĺ
μ(l , ĺ)Q i(ĺ)
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Structure of CRF-RNN

 

Unary Potentials, Normalization and BPTT:
● Unary values are taken from the ConvNN (FCN-8s, 

stride length = 8)

● Softmax normalization over all labels in every pixel

● Error differentials are taken wrt compatibility and 
kernel weights; they are backprop'd for T iterations in 
the unfolded CRFasRNN and ConvNN
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         APPLICATION TO OTHER 
PROBLEMS
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Application to other problems

 

Instance segmentation and tracking
● CRFasRNN distinguishes between 20 different 

classes, often finding sharp contours, but not 
instances of the same class,

● This is often a problem if your objective is automation 
of object tracking in a challenging environment:

–  bad lighting, shadows, 
–  cluttered objects, occlusion, 
–  color confusion (object looks a lot like a 

background)



CRF as RNN 21

Application to other problems

 

Instance segmentation and tracking
● Most existing out-of-the box algorithms like TLD, MIL, 

MeanShift, CamShift fail to do this
● Solution: CRFasRNN in combination with other 

algorithms: 
– Detect 'cow blobs' on the image
– Zoom to each blob, improve the contrast using 

threshold,
– Extract and refine edges/contours of objects
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Application to other problems

 

Instance segmentation and tracking
● Work in progress:
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       Website:

http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
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         THANK YOU
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