
CONDITIONAL RANDOM FIELDS
AS

RECURRENT NEURAL NETWORKS
FOR SEMANTIC IMAGE SEGMENTATION

AND
OTHER PROBLEMS

Alex Ter-Sarkisov, Postdoctoral Researcher at the School of Computing,
Dublin Institute of Technology

27/06/16

CRF as RNN 2

1. Introduction (CRFs and Deep Learning)

2. End-to-End Learning (ConvNN and CRF-
RNN)

3. Structure of CRF-RNN

4. Current Results

5. Application to Other Problems

CRF as RNN 3

 INTRODUCTION

CRF as RNN 4

Introduction
Problem formulation: identify and label objects
on the image (semantic image segmentation)

CRF as RNN 5

Introduction

Existing state-of-the art algorithms:
● Fully Connected ConvNNs (Long et al, 2015)
● Achieved ~62.7% precision on VOC2011 test

 Shortcomings:
● Coarse output (ConvNNs) due to the size of the receptive field,
● ConvNNs are tuned to perform classification rather than segmentation

problems, i.e. answering the question like 'Which object is present in
the image' rather than 'which objects and where are present on the
image'

● Fails to capture the structure of the image (interaction between pixels)

CRF as RNN 6

Introduction

Solution: Conditional Random Fields (CRFs)
● A form or Markov Random Fields (MRFs), conditional on a global

observation (image)
● Takes into consideration the structure of the image (Gaussian filters),
● Error function uses Intersect over Union (IoU) metric to estimate

discrepancy between the model and the ground truth,
● Current implementation: Kraehenbuehl, Koltun (2012)
● Good results, but could be improved further!
● Hence, this presentation is based on S.Zheng et al (Conditional

Random Fields as Recurrent Neural Networks, 2015)

CRF as RNN 7

 END-TO-END LEARNING

 (CRF AS RNN)

CRF as RNN 8

End-to-End Learning

CRF as RNN:
● Combines unary (independent) and pairwise (structure) values

for each pixel:
● ConvNN returns unary values for each pixel
● CRF is embedded within a Recurrent Neural Network (RNN)

framwork – hence the name: CRFasRNN
● CRFasRNN is used to derive label distribution for each pixel

based on the image structure (connection between pixels in the
image)

● Training using Backpropagation Through Time (BPTT)

CRF as RNN 9

End-to-End Learning

CRF as RNN:
● Feed-forward stage: one unary input from the ConvNN, T

iterations within CRF-RNN
● Output of the network is taken only after T iterations: probability

distribution over every pixel in the image (L labels per N pixels)
● Objective function: Energy over image

● Loss function: Intersect over Union

CRF as RNN 10

End-to-End Learning

FCN

CRF-RNN

CRF-RNN

CRF-RNN

t = 1

t = 2

t = T

CRF as RNN 11

End-to-End Learning

CRF as RNN:
● Backpropagation stage: error differentials are
computed from the IoU loss function

● One of the key contributions of the article: end-to-end
training. Partial derivatives wrt to weights are
backprop'd through the CRFasRNN (T times, as usual
for unfolded RNN) and through ConvNN

● Parameters of CRFasRNN and ConvNN are learnt
jointly during backprop stage

CRF as RNN 12

 STRUCTURE OF CRF-RNN

CRF as RNN 13

Structure of CRF-RNN
CRF as RNN takes ConvNN's output (unary values) as the initial
input and proceeds with the mean-field approximation of the
underlying label distribution.

The main job of CRFasRNN is to understand the interaction between
pixels on the image by extracting features such as color and position.

The output of CRF is probability distribution over labels in each pixel
that considers label compatibility, i.e. the structure of the image,
something that other approaches like ConvNN are not capable of.

CRF as RNN 14

Structure of CRF-RNN

CRF as RNN:
– For T iterations:

● For each pixel:
– For each label:

● Message Passing (loop through pixels)
● Filter weighing (loop through filters)
● Compatibility (loop through labels)
● Adding Unary Potentials
● Normalization (loop through labels)

CRF as RNN 15

Structure of CRF-RNN

Message Passing:
● Taking variables like RGB and pixel position we obtain

Gaussian kernels of the pairs of pixels,
● Kernels are then convolved with inputs (unary

potentials)
● In total, for every label and every pair of pixels there

are a total of M (here M=2: bilateral and spatial)
filters/kernels stored

~Q=∑ j≠k
km

(f i , f j)Q j(l)

CRF as RNN 16

Structure of CRF-RNN

Filter Weighing:
● All M filters are weighed and convolved:

k (f i , f j)=w1 exp (
−|p i−p j|

2

2θ1
2

−
|I i−I j|

2

2θ2
2

)+w2exp (
−|pi−p j|

2

2θ3
2

)

Q̄(l)=∑m=1

M
wm

~Qm

CRF as RNN 17

Structure of CRF-RNN

Compatibility Transform:
● For each label in every pixel weighed filter outputs are

convolved with a parameter μ(l,l')

● This parameter penalizes assignment of different
labels to pixels with similar properties

● In CRFasRNN setting this parameter is learned rather
than fixed

Q̂(l)=∑l≠ĺ
μ(l , ĺ)Q i(ĺ)

CRF as RNN 18

Structure of CRF-RNN

Unary Potentials, Normalization and BPTT:
● Unary values are taken from the ConvNN (FCN-8s,

stride length = 8)

● Softmax normalization over all labels in every pixel

● Error differentials are taken wrt compatibility and
kernel weights; they are backprop'd for T iterations in
the unfolded CRFasRNN and ConvNN

CRF as RNN 19

 APPLICATION TO OTHER
PROBLEMS

CRF as RNN 20

Application to other problems

Instance segmentation and tracking
● CRFasRNN distinguishes between 20 different

classes, often finding sharp contours, but not
instances of the same class,

● This is often a problem if your objective is automation
of object tracking in a challenging environment:

– bad lighting, shadows,
– cluttered objects, occlusion,
– color confusion (object looks a lot like a

background)

CRF as RNN 21

Application to other problems

Instance segmentation and tracking
● Most existing out-of-the box algorithms like TLD, MIL,

MeanShift, CamShift fail to do this
● Solution: CRFasRNN in combination with other

algorithms:
– Detect 'cow blobs' on the image
– Zoom to each blob, improve the contrast using

threshold,
– Extract and refine edges/contours of objects

CRF as RNN 22

Application to other problems

Instance segmentation and tracking
● Work in progress:

CRF as RNN 23

 Website:

http://www.robots.ox.ac.uk/~szheng/crfasrnndemo

CRF as RNN 24

 THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

