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Early Stage of Depth Sensing

» First Stereoscope was invented in 1932 by Sir Charles
Wheatstone.




» Tremendous iImprovement since the invention
of stereoscope in depth sensing technologies.

» Early 2000 was the beginning of the new era
so-called “3D Revolution”.
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*The scene is recorded all at once
and doesn’t have to be scanned
*2D and 3D information in a
multi-part image

*Compact system without moving
components

*Possibility to achieve high
accuracy at short range

*Possibility to achieve high accuracy at short range

*Very high accuracy
*Difficult lighting conditions
are not a problem

*Can be optimized for low
resolution real-time applications
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specific accuracy




Deep Learning and Depth Sensing

Deep learning methods are applied to 3 categories of
applications:

1. Depth from Stereo Camera
2. Depth from Monocular Camera
3. SLAM+Deep Learning (Recent)




KITTI Benchmark by:

Karlsruhe Institute of
Technology and Toyota
Technological Institute at
Chicago

http://www.cvlibs.net/data
sets/kitti/eval scene flow.p
hp?benchmark=stereo
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http://www.cvlibs.net/data

Challenges

1. Computationally expensive for LIDAR and
stereo cameras

2. Optically not possible for Monocular
cameras

3. Power resources limitation




VGG16: (3, 224, 224)

Conv2d-1
RelLU-2
Conv2d-3
RelLU-4
MaxPool2d-5
Conv2d-6
RelLU-7
Conv2d-8
RelLU-9
MaxPool2d-10
Conv2d-11
ReLU-12
Conv2d-13
ReLU-14
Conv2d-15
ReLU-16
MaxPool2d-17
Conv2d-18
ReLU-19
Conv2d-20
RelLU-21
Conv2d-22
RelLU-23
MaxPool2d-24
Conv2d-25
RelLU-26
Conv2d-27
RelLU-28
Conv2d-29
RelLU-30
MaxPool2d-31
Linear-32
ReLU-33
Dropout-34
Linear-35
ReLU-36
Dropout-37
Linear-38

Output Shape Param # MACC #
[-1, 64, 224, 224] 1,792 0.56%
[-1, 64, 224, 224] 0 -
[-1, 64, 224, 224] 36,928 11.96%
[-1, 64, 224, 224] 0 -
[-1, 64, 112, 112] 0 -
[-1, 128, 112, 112] 73,856 5.98%
[-1, 128, 112, 112] 0 -
[-1, 128, 112, 112] 147,584 11.96%
[-1, 128, 112, 112] 0 -
[-1, 128, 56, 56] (0] -
[-1, 256, 56, 56] 295,168 5.98%
[-1, 256, 56, 56] 0 -
[-1, 256, 56, 56] 590,080 11.96%
[-1, 256, 56, 56] 0 -
[-1, 256, 56, 56] 590,080 11.96%
[-1, 256, 56, 56] 0 -
[-1, 256, 28, 28] 0 -
[-1, 512, 28, 28] 1,180,160 5.98%
[-1, 512, 28, 28] 0] -
[-1, 512, 28, 28] 2,359,808 11.96%
[-1, 512, 28, 28] 0 -
[-1, 512, 28, 28] 2,359,808 11.96%
[-1, 512, 28, 28] 0 -
[-1, 512, 14, 14] 0 -
[-1, 512, 14, 14] 2,359,808 2.99%
[-1, 512, 14, 14] 0 -
[-1, 512, 14, 14] 2,359,808 2.99%
[-1, 512, 14, 14] 0 -
[-1, 512, 14, 14] 2,359,808 2.99%
[-1, 512, 14, 14] 0 -
[-1, 512, 7, 7] (0] -
[-1, 4096] 102,764,544 0.66%
[-1, 4096] (0] -
[-1, 4096] 0 -
[-1, 4096] 16,781,312 0.11%
[-1, 4096] 0 -
[-1, 4096] 0 -
[-1, 1000] 4,097,000 0.03%

Total params: 138,357,544

Total MACC: 15,470,264,320

Trainable params: 138,357,544
Non-trainable params: O

Input size (MB): 0.57
Forward/backward pass size (MB): 218.59

Params size (MB): 527.79
Estimated Total Size (MB): 746.96



CN N SL/ \M https://arxiv.org/abs/1704.03489

FPS:29.864094  W:Floor M:Vertical structure/Wall

:Large structure/furniture Bl:Small structure

Refined Depth

5

Result of dense 3D reconstruction
and semantic label fusion




Input MVDepthNet

i |

FCRN VI-MEAN

https://arxiv.org/abs/1807.08563


https://arxiv.org/abs/1807.08563

» The networks are trained on the data
captured by a LIDAR scanner or consumer
depth sensors.

» The main challenges with this type of
ground-truth generation are the data sparsity
and expensive components.




Simulation Platforms

» Open source
» Easy to implement

» Capturing thousands/millions of frames

within a short time frame

» Variety of testing environment




DeepDrive.io

Up to 8 cameras
with depth -
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Microsoft AirSim

Ground Truth Depth Generated RGB Images

Domain independence is a <. ! B,
crucial capability for monocular :
depth estimation systems



