



## Engaging People

# **Encoder-decoder, Machine Translation and more**

## **Dimitar Shterionov**

Post-doctoral researcher, DCU

"One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' " - Warren Weaver, 1947 Autoencoders

- Suppose we have a set of **multi-dimensional** data points  $X = \{x^1, x^2, ..., x^m\}$ .
- Is there a general way to map  $X \rightarrow Z = \{z^1, z^2, ..., z^m\}$ , where z's have **lower dimensionality** than x's and
- Z can faithfully **reconstruct**  $X: Z \rightarrow \tilde{X}$

$$z^{i} = W_{1}x^{i} + b_{1}$$
$$\tilde{x}^{i} = W_{2}z^{i} + b_{2}$$
$$J(W_{1}, b_{1}, W_{2}, b_{2}) = \sum_{i=1}^{m} (\tilde{x}^{i} - x^{i})^{2}$$

- Use stochastic gradient descent to minimize
- Autoencoders are unsupervised





[Quoc V. Le, A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks]

Autoencoders

- Suppose we have a set of **multi-dimensional** data points  $X = \{x^1, x^2, ..., x^m\}$ .
- Is there a general way to map  $X \rightarrow Z = \{z^1, z^2, ..., z^m\}$ , where z's have **lower dimensionality** than x's and
- Z can faithfully **reconstruct**  $X: Z \rightarrow \tilde{X}$

$$z^{i} = W_{1}x^{i} + b_{1}$$
$$\tilde{x}^{i} = W_{2}z^{i} + b_{2}$$
$$J(W_{1}, b_{1}, W_{2}, b_{2}) = \sum_{i=1}^{m} (\tilde{x}^{i} - x^{i})^{2}$$

- Use stochastic gradient descent to minimize
- Autoencoders are unsupervised

[Quoc V. Le, A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks]



- N→1

Language modelling:  $X = \{x^1, x^2, ..., x^{T-1}\}, y = x^T$ ,  $x^i$  is the words i, T is current word.

N→M

Translation:  $X = \{x^1, x^2, ..., x^T\}, Y = \{y^1, y^2, ..., y^{T'}\}, X$  is a sentence in the source language and Y is the sentence in the target language

[Quoc V. Le, A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks]

#### www.adaptcentre.ie





- N→1

Language modelling:  $X = \{x^1, x^2, ..., x^{T-1}\}, y = x^T$ ,  $x^i$  is the words i, T is current word.

N→M

Translation:  $X = \{x^1, x^2, ..., x^T\}, Y = \{y^1, y^2, ..., y^{T'}\}, X$  is a sentence in the source language and Y is the sentence in the target language

Decoder





[Cho et al, 2014 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation]

www.adaptcentre.ie

5

- N→1

Language modelling:  $X = \{x^1, x^2, ..., x^{T-1}\}, y$  $x^i$  is the words i, T is current word.

N→M

Translation:  $X = \{x^1, x^2, ..., x^T\}, Y = \{y^1, y^2, ..., X^T\}$  is a sentence in the source language and Y is sentence in the target language

$$p(y^i | y^1, y^2, ..., y^{i-1}, h^T)$$



[Cho et al, 2014 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation]

- N→1

Language modelling:  $X = \{x^1, x^2, ..., x^{T-1}\}, y$  $x^i$  is the words i, T is current word.

N→M

Translation:  $X = \{x^1, x^2, ..., x^T\}, Y = \{y^1, y^2, ..., X \text{ is a sentence in the source language and } Y \text{ is sentence in the target language}$ 

$$p(y^{i}|y^{1}, y^{2}, \dots, y^{i-1}, h^{T})$$
$$p(Y^{n}|X^{n}, \theta)$$



[Cho et al, 2014 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation]

**Machine Translation** 

- Bilingual:  $p(Y^n|X^n, \theta)$
- Multilingual:  $p(Y^n|X^n, L^k, \theta)$

Automatic Post-editing:  $p(Z^n|X^n, Y^n, \theta)$ 

- Single source/encoder
- Multi-source

Quality estimation:  $p(Y|X^n, \theta), Y \in [0, 1]$ 

- Equivalent encoders
- Different encoders

```
Cross lingual text entailment: p(Y|X^n, \theta),
Y \in \{entails, contradicts, none\}
```

www.adaptcentre.ie

9

## Google

- Multilingual NMT with no parallel data
- Indicate target language < 2ko >

![](_page_8_Figure_5.jpeg)

## KantanMT

- Multilingual NMT with and without parallel data
- Low resource scenarios
- Indicate target language < 2ko >
- Indicate source language < 2hi >

| Engine:                 | BLEU* | F-Measure* |
|-------------------------|-------|------------|
| ZST <sub>2</sub>        | 0.21  | 3.26       |
| ZST <sub>3</sub>        | 9.78  | 26.40      |
| one-to-one <sub>1</sub> | 8.20  | 22.16      |
| $Pivot_3 + Pivot_4$     | 0.16  | 16.94      |

[https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html] [Mattoni et al, Zero-Shot Translation for Indian Languages with Sparse Data, MT Summit 2017]

![](_page_8_Figure_13.jpeg)

![](_page_8_Picture_14.jpeg)

![](_page_8_Picture_15.jpeg)

#### Automatic post editing

- Given source and MT output generate improved translation

Single encoder

![](_page_9_Figure_4.jpeg)

![](_page_9_Picture_5.jpeg)

11

Automatic post editing

- Given source and MT output generate improved translation

![](_page_10_Figure_4.jpeg)

# $h = \tanh(W_c, \left[\frac{\sum_{i=1}^{T^1} h_i^1}{T^1}; \frac{\sum_{i=1}^{T^2} h_i^2}{T^2}\right])$

Multiple encoders

[Barret Zoph, Kevin Knight, Multi-Source Neural Translation]

[Marcin Junczys-Dowmunt, Roman Grundkiewicz, An Exploration of Neural Sequence-to-Sequence Architectures for Automatic Post-

#### A World Leading SFI Research Centre

Single encoder

Automatic post editing

- Given source and MT output generate improved translation

![](_page_11_Figure_5.jpeg)

#### Multiple encoders with extra information

![](_page_11_Figure_7.jpeg)

![](_page_11_Picture_8.jpeg)

## Quality Estimation and Cross lingual textual entailment

www.adaptcentre.ie

13

#### **Quality estimation**

- Given the source and MT output generate a quality score (TER)

![](_page_12_Figure_4.jpeg)

[Ive et al, deepQuest: A Framework for Neural-based Quality Estimation]

[Kim et al, Predictor-Estimator: Neural Quality Estimation Based on Target Word Prediction for Machine Translation]

A World Leading SFI Research Centre

# Quality Estimation and Cross lingual textual entailment

www.adaptcentre.ie

#### **Quality estimation**

Given the source and MT output generate a quality score (TER)

![](_page_13_Figure_4.jpeg)

Cross lingual textual entailment

 Given two sentences (one in language L1 another in language L2) predict entailment

![](_page_13_Figure_7.jpeg)

[Rocktäschel et al, Reasoning about entailment with Neural Attention]

[Ive et al, deepQuest: A Framework for Neural-based Quality Estimation]

[Kim et al, Predictor-Estimator: Neural Quality Estimation Based on Target Word Prediction for Machine Translation]

![](_page_13_Picture_11.jpeg)

\_\_\_\_\_

#### A World Leading SFI Research Centre

- Encoder decoder architectures provide solutions for a large set of NLP (and others) problems.
- Model reusability is a bonus.
- Parallel data is not always necessary to do MT, but always helpful.

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

www.adaptcentre.ie