
Causal Embeddings For

Recommendation

Stephen Bonner & Flavian Vasile

Criteo Research

September 28, 2018



Introduction

Classical Recommendation approaches:

• A distance learning problem between pairs of products or

between pairs of users and products - measured with MSE and

AUC.

• A next item prediction problem that models the user behavior

and tries to predict next action - ranked Precision@K and

Normalized Discounted Cumulative Gain (NDCG).

• However - both fail to model the inherent interventionist nature

of recommendation, which should not only attempt to model the

organic user behavior, but to actually attempt to optimally

influence it according to a preset objective.



Recommendation Policy

• We assume a stochastic policy πx that associates to each user ui

and product pj a probability for the user ui to be exposed to the

recommendation of product pj :

pj ∼ πx(.|ui )

• For simplicity we assume showing no products is also a valid

intervention in P.



Policy Rewards

• Reward rij is distributed according to an unknown conditional

distribution r depending on ui and pj :

rij ∼ r(.|ui , pj)

• The reward Rπx associated with a policy πx is equal to the sum

of the rewards collected across all incoming users by using the

associated personalized product exposure probability:

Rπx =
∑
ij

rijπx(pj |ui )p(ui ) =
∑
i

Rij



Individual Treatment Effect

• The Individual Treatment Effect (ITE) value of a policy for a

given user i and a product j for a policy πx is defined as the

difference between its reward and the control policy reward:

ITEπx
ij = Rπx

ij − Rπc
ij

• We are interested in finding the policy π∗ with the highest sum

of ITEs:

π∗ = arg max
πx
{ITEπx}

where: ITEπx =
∑

ij ITE
πx
ij



Optimal ITE Policy

• For any control policy πc , the best incremental policy π∗ is the

policy that shows deterministically to each user the product with

the highest associated reward.

π∗ = πdet =

1, if pj = p∗i

0, otherwise



IPS Solution For π∗

• In order to find the optimal policy π∗ we need to find for each

user ui the product with the highest personalized reward r∗i .

• In practice we do not observe directly rij , but yij ∼ rijπx(pj |ui ).

• Current approach: Inverse Propensity Scoring (IPS)-based

methods to predict the unobserved reward rij :

r̂ij ≈
yij

πc(pj |ui )



Addressing The Variance Issues Of IPS

• Main shortcoming: IPS-based estimators do not handle well big

shifts in exposure probability between treatment and control

policies (products with low probability under the logging policy

πc will tend to have higher predicted rewards).

• Minimum variance πc = πrand . However, low performance!

• Trade-off solution: Learn from πc a predictor for performance

under πrand



Our Approach: Causal Embeddings (CausE)

• We are interested in building a good predictor for

recommendation outcomes under random exposure for all the

user-product pairs, which we denote as ŷ randij .

• We assume that we have access to a large sample Sc from the

logging policy πc and a small sample St from the randomized

treatment policy πrandt .

• To this end, we propose a multi-task objective that jointly

factorizes the matrix of observations y cij ∈ Sc and the matrix of

observations y tij ∈ St .



Predicting Rewards Via Matrix Factorization

• We assume that both the expected factual control and

treatment rewards can be approximated as linear predictors over

the fixed user representations ui :

y cij ≈< ui , θ
c
j >, or Y

c ≈ UΘc

y tij ≈< ui , θ
t
j >, or Y

t ≈ UΘt

• As a result, we can approximate the ITE of a user-product pair

i , j as the difference between the two:

ÎTE ij =< ui , θ
t
j > − < ui , θ

c
j >=< θ∆j , ui >



Joint Objective

Lt = L(UΘt ,Yt) + Ω(Θt)
Lc = L(UΘc ,Yc) + Ω(Θc)

Θt ,Θc parameter matrix of product representations for t, c

U parameter matrix of user representations

L arbitrary element wise loss function

Ω(·) element wise regularization term

LprodCausE = L(UΘt ,Yt) + Ω(Θt)︸ ︷︷ ︸
treatment task loss

+ L(UΘc ,Yc) + Ω(Θc)︸ ︷︷ ︸
control task loss

+

+ Ω(Θt −Θc)︸ ︷︷ ︸
regularizer between tasks



Joint Objective

Lt = L(UΘt ,Yt) + Ω(Θt)
Lc = L(UΘc ,Yc) + Ω(Θc)

Θt ,Θc parameter matrix of product representations for t, c

U parameter matrix of user representations

L arbitrary element wise loss function

Ω(·) element wise regularization term

LprodCausE = L(UΘt ,Yt) + Ω(Θt)︸ ︷︷ ︸
treatment task loss

+ L(UΘc ,Yc) + Ω(Θc)︸ ︷︷ ︸
control task loss

+

+ Ω(Θt −Θc)︸ ︷︷ ︸
regularizer between tasks



Experimental Setup: Datasets

• We use the MovieLens100K and MovieLens10M explicit rating

datasets (1-5). We process it as follows:

• We binarize the ratings yij by setting 5-star ratings to 1 (click)

and everything else to zero (view only).

• We then create two datasets: regular (REG) and skewed

(SKEW), each one with 70/10/20 train/validation/test event

splits.



Experimental Setup: SKEW Dataset

• Goal: Generate a test dataset that simulates rewards

uniform expose πrandt .

• Method:

• Step 1: Simulate uniform exposure on 30% of users by rejection

sampling.

• Step 2: Split the rest of 70% of users in 60% train 10% validation

• Step 3: Add to train a fraction of the test data (e.g. St) to simulate

a small sample from πrand
t .

• NB: In our experiments, we varied the size of St between 1%

and 15%.



Experimental Setup: Exploration Sample St

We define 5 possible setups of incorporating the exploration data:

• No adaptation (no) - trained only on Sc .

• Blended adaptation (blend) - trained on the blend of the Sc

and St samples.

• Test adaptation (test) - trained only on the St samples.

• Product adaptation (prod) - separate treatment embedding for

each product based on the St sample.

• Average adaptation (avg) - average treatment product by

pooling all the St sample into a single vector.



Method MovieLens10M (SKEW)

MSE lift NLL lift AUC

BPR-no − − 0.693(±0.001)

BPR-blend − − 0.711(±0.001)

SP2V-no +3.94%(±0.04) +4.50%(±0.04) 0.757(±0.001)

SP2V-blend +4.37%(±0.04) +5.01%(±0.05) 0.768(±0.001)

SP2V-test +2.45%(±0.02) +3.56%(±0.02) 0.741(±0.001)

WSP2V-no +5.66%(±0.03) +7.44%(±0.03) 0.786(±0.001)

WSP2V-blend +6.14%(±0.03) +8.05%(±0.03) 0.792(±0.001)

BN-blend − − 0.794(±0.001)

CausE-avg +12.67%(±0.09) +15.15%(±0.08) 0.804(±0.001)

CausE-prod-T +07.46%(±0.08) +10.44%(±0.09) 0.779(±0.001)

CausE-prod-C +15.48%(±0.09) +19.12%(±0.08) 0.814(±0.001)

Table 1: Results for MovieLens10M on the Skewed (SKEW) test

datasets. We can observe that our best approach CausE-prod-C

outperforms the best competing approaches WSP2V-blend by a large

margin (21% MSE and 20% NLL lifts on the MovieLens10M dataset)

and BN-blend (5% AUC lift on MovieLens10M).



Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Test Sample in Training Set (% of Overall Dataset)

6

7

8

9

10

11

12

M
SE

 L
ift

 (%
)

WSP2V-blend
SP2V-blend
CausE-prod-C

Figure 1: Change in MSE lift as more test set is injected into the blend

training dataset.



Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Test Sample in Training Set (% of Overall Dataset)

5

6

7

8

9

10

11

NL
L 

Lif
t (

%
)

WSP2V-blend
SP2V-blend
CausE-prod-C

Figure 2: Change in NLL lift as more test set is injected into the blend

training dataset.



Conclusions

• We have introduced a novel method for factorizing implicit

user-item matrices that optimizes for incremental

recommendation outcomes.

• We learn to predict user-item similarities under the uniform

exposure distribution.

• CausE is an extension of matrix factorization algorithms that

adds a regularizer term on the discrepancy between the product

embeddings that fit the training distribution and their

counter-part embeddings that fit the uniform exposure

distribution.

https://github.com/criteo-research/CausE



Thank You!


