Causal Embeddings For Recommendation

Stephen Bonner & Flavian Vasile Criteo Research

September 28, 2018

Introduction

Classical Recommendation approaches:

- A distance learning problem between pairs of products or between pairs of users and products - measured with MSE and AUC.
- A next item prediction problem that models the user behavior and tries to predict next action - ranked Precision@K and Normalized Discounted Cumulative Gain (NDCG).
- However both fail to model the inherent interventionist nature of recommendation, which should not only attempt to model the organic user behavior, but to actually attempt to optimally influence it according to a preset objective.

We assume a stochastic policy π_x that associates to each user u_i and product p_j a probability for the user u_i to be exposed to the recommendation of product p_j:

$$p_j \sim \pi_x(.|u_i)$$

• For simplicity we assume showing no products is also a valid intervention in \mathcal{P} .

Policy Rewards

 Reward r_{ij} is distributed according to an unknown conditional distribution r depending on u_i and p_j:

 $r_{ij} \sim r(.|u_i, p_j)$

 The reward R^{π_x} associated with a policy π_x is equal to the sum of the rewards collected across all incoming users by using the associated personalized product exposure probability:

$$R^{\pi_{\times}} = \sum_{ij} r_{ij} \pi_{\times}(p_j | u_i) p(u_i) = \sum_i R_{ij}$$

Individual Treatment Effect

 The Individual Treatment Effect (ITE) value of a policy for a given user i and a product j for a policy π_x is defined as the difference between its reward and the control policy reward:

$$ITE_{ij}^{\pi_x} = R_{ij}^{\pi_x} - R_{ij}^{\pi_c}$$

 We are interested in finding the policy π^{*} with the *highest sum* of *ITEs*:

$$\pi^* = \arg \max_{\pi_x} \{ ITE^{\pi_x} \}$$

where: $ITE^{\pi_x} = \sum_{ij} ITE_{ij}^{\pi_x}$

 For any control policy π_c, the best incremental policy π^{*} is the policy that shows deterministically to each user the product with the highest associated reward.

$$\pi^* = \pi_{det} = egin{cases} 1, & ext{if } p_j = p_i^* \ 0, & ext{otherwise} \end{cases}$$

- In order to find the optimal policy π* we need to find for each user u_i the product with the highest personalized reward r^{*}_i.
- In practice we do not observe directly r_{ij} , but $y_{ij} \sim r_{ij}\pi_x(p_j|u_i)$.
- Current approach: Inverse Propensity Scoring (IPS)-based methods to predict the unobserved reward r_{ij}:

$$\hat{r}_{ij} pprox rac{y_{ij}}{\pi_c(p_j|u_i)}$$

Addressing The Variance Issues Of IPS

- Main shortcoming: IPS-based estimators do not handle well big shifts in exposure probability between treatment and control policies (products with low probability under the logging policy π_c will tend to have higher predicted rewards).
- Minimum variance $\pi^{c} = \pi^{rand}$. However, low performance!
- Trade-off solution: Learn from π^c a predictor for performance under $\pi^{\textit{rand}}$

Our Approach: Causal Embeddings (CausE)

- We are interested in building a good predictor for recommendation outcomes under random exposure for all the user-product pairs, which we denote as ŷ^{rand}.
- We assume that we have access to a large sample S_c from the logging policy π_c and a small sample S_t from the randomized treatment policy π^{rand}_t.
- To this end, we propose a multi-task objective that jointly factorizes the matrix of observations y^c_{ij} ∈ S_c and the matrix of observations y^t_{ij} ∈ S_t.

Predicting Rewards Via Matrix Factorization

 We assume that both the expected factual control and treatment rewards can be approximated as linear predictors over the fixed user representations u_i:

$$\begin{split} y_{ij}^c \approx & < u_i, \theta_j^c >, \text{ or } Y^c \approx U \Theta_c \\ y_{ij}^t \approx & < u_i, \theta_j^t >, \text{ or } Y^t \approx U \Theta_t \end{split}$$

• As a result, we can approximate the ITE of a user-product pair *i*, *j* as the difference between the two:

$$\widehat{ITE}_{ij} = \langle u_i, \theta_j^t \rangle - \langle u_i, \theta_j^c \rangle = \langle \theta_j^{\Delta}, u_i \rangle$$

Joint Objective

$$L_t = L(U\Theta_t, Y_t) + \Omega(\Theta_t)$$
$$L_c = L(U\Theta_c, Y_c) + \Omega(\Theta_c)$$

- Θ_t, Θ_c parameter matrix of product representations for t, c
- *U* parameter matrix of user representations
- L arbitrary element wise loss function
- $\Omega(\cdot)$ element wise regularization term

Joint Objective

$$L_t = L(U\Theta_t, Y_t) + \Omega(\Theta_t)$$
$$L_c = L(U\Theta_c, Y_c) + \Omega(\Theta_c)$$

 $\begin{array}{ll} \Theta_t, \Theta_c & \mbox{parameter matrix of product representations for } t, c \\ U & \mbox{parameter matrix of user representations} \\ L & \mbox{arbitrary element wise loss function} \end{array}$

 $\Omega(\cdot)$ element wise regularization term

$$L_{CausE}^{prod} = \underbrace{L(U\Theta_t, Y_t) + \Omega(\Theta_t)}_{treatment \ task \ loss} + \underbrace{L(U\Theta_c, Y_c) + \Omega(\Theta_c)}_{control \ task \ loss} + \underbrace{\Omega(\Theta_t - \Theta_c)}_{regularizer \ between \ tasks}$$

Experimental Setup: Datasets

- We use the *MovieLens100K* and *MovieLens10M* explicit rating datasets (1-5). We process it as follows:
- We binarize the ratings y_{ij} by setting 5-star ratings to 1 (click) and everything else to zero (view only).
- We then create two datasets: regular (REG) and skewed (SKEW), each one with 70/10/20 train/validation/test event splits.

Experimental Setup: SKEW Dataset

- Goal: Generate a test dataset that simulates rewards uniform expose π_t^{rand} .
- Method:
 - Step 1: Simulate uniform exposure on 30% of users by rejection sampling.
 - Step 2: Split the rest of 70% of users in 60% train 10% validation
 - Step 3: Add to train a fraction of the test data (e.g. S_t) to simulate a small sample from π_t^{rand} .
- NB: In our experiments, we varied the size of S_t between 1% and 15%.

Experimental Setup: Exploration Sample S_t

We define 5 possible setups of incorporating the exploration data:

- No adaptation (no) trained only on S_c.
- Blended adaptation (blend) trained on the blend of the S_c and S_t samples.
- Test adaptation (test) trained only on the S_t samples.
- **Product adaptation** (*prod*) separate treatment embedding for each product based on the S_t sample.
- Average adaptation (*avg*) average treatment product by pooling all the S_t sample into a single vector.

Method	MovieLens10M (SKEW)		
	MSE lift	NLL lift	AUC
BPR-no	-	_	0.693(±0.001)
BPR-blend	-	_	$0.711(\pm 0.001)$
SP2V-no	$+3.94\%(\pm 0.04)$	$+4.50\%(\pm 0.04)$	$0.757(\pm 0.001)$
SP2V-blend	$+4.37\%(\pm 0.04)$	$+5.01\%(\pm 0.05)$	$0.768(\pm 0.001)$
SP2V-test	$+2.45\%(\pm 0.02)$	$+3.56\%(\pm 0.02)$	$0.741(\pm 0.001)$
WSP2V-no	$+5.66\%(\pm 0.03)$	+7.44%(±0.03)	0.786(±0.001)
WSP2V-blend	$+6.14\%(\pm 0.03)$	$+8.05\%(\pm 0.03)$	$0.792(\pm 0.001)$
BN-blend	-	—	$0.794(\pm 0.001)$
CausE-avg	$+12.67\%(\pm0.09)$	$+15.15\%(\pm0.08)$	0.804(±0.001)
CausE-prod-T	$+07.46\%(\pm 0.08)$	$+10.44\%(\pm 0.09)$	$0.779(\pm 0.001)$
CausE-prod-C	+ 15.48% (± 0.09)	+ 19.12% (± 0.08)	$0.814(\pm 0.001)$

Table 1: Results for MovieLens10M on the Skewed (SKEW) test datasets. We can observe that our best approach *CausE-prod-C* outperforms the best competing approaches *WSP2V-blend* by a large margin (21% MSE and 20% NLL lifts on the MovieLens10M dataset) and *BN-blend* (5% AUC lift on MovieLens10M).

Results

Figure 1: Change in MSE lift as more test set is injected into the blend training dataset.

Results

Figure 2: Change in NLL lift as more test set is injected into the blend training dataset.

Conclusions

- We have introduced a novel method for factorizing implicit user-item matrices that optimizes for *incremental recommendation outcomes*.
- We learn to predict user-item similarities under the uniform exposure distribution.
- *CausE* is an extension of matrix factorization algorithms that adds a regularizer term on the discrepancy between the product embeddings that fit the training distribution and their counter-part embeddings that fit the uniform exposure distribution.

https://github.com/criteo-research/CausE

Thank You!

