Centre for Data Analytics

Explainable Machine Learning Models for Structured Data

Dr Georgiana Ifrim

georgiana.ifrim@insight-centre.org (joint work with Severin Gsponer, Thach Le Nguyen, Iulia Ilie)

30 July 2018

Overview

Structured Data

- Symbolic Sequences (e.g., DNA, malware)
- Numeric Sequences (e.g., time series)

• Explainable Learning Models

Black-Box vs Linear Models with Rich Features

• SEQL: Sequence Learning with All-Subsequences

• Framework for Sequence Classification & Regression

Structured Data: Sequences & Time Series

Many Applications:

DN

	Value	Data points
	290.507	AGGGCATCATGGAGCTGTCCAG
Α	679.305	ATCACAATTTTGCCGAGAGCGA
	1998.715	GTACACCCCGTTCGGCGGCCCA
	447.803	CCTTTAGCCCATCGTTGGCCAA

Byte sequence

	Class	Data points
	+1	C7 01 24 04 5F 0E EA DC 00 E9 D6 4A 00 0C 66 89
Malware	+1	74 13 BA EF 01 00 06 68 95 14 88 B7 00 0F 0E EA
	-1	08 F9 C8 1A 80 C1 8B 48 40 00 89 51 10 B8 04 00
	-1	B8 00 00 00 00 50 E8 D8 00 00 00 83 C4 04 53 FF

 Sensors

0	-0.26927	-0.26927	-0.26927	-0.26927	-0.26927
1	-0.46887	2.748	1.6263	-0.46887	-0.46887
0	2.2429	-0.39296	-0.39296	-0.39296	-0.39296
0	-0.45836	2.4229	-0.45836	2.5162	1.9876
0	-0.58609	-0.58609	-0.58609	-0.58609	-0.58609
0	1.8657	-0.44769	-0.44769	-0.44769	1.7914
0	1.3541	1.9638	-0.53962	-0.53962	-0.53962

Explainable Machine Learning Models

• Accuracy & Efficiency:

- Many <u>accurate</u> algorithms: e.g., ensembles (Random Forest), Deep Neural Networks; but hard to interpret big, complex models
- Large volumes of data, need <u>efficient</u> models

Interpretability:

- White box (linear models) vs black box (deep nets)
- Interpretable AI is a big deal: Darpa Explainable AI (XAI; 2016), EU GDPR legislation (May 2018)

Darpa Explainable AI (XAI)

[Source: http://www.darpa.mil/program/explainable-artificial-intelligence]

SEQL: Sequence Learning with All-Subsequences

Key Idea: Linear Models with Rich Features are Accurate and Interpretable

- Linear models are **interpretable and well understood** (linear regression, logistic regression).
- Linear models with rich features are **accurate** (similar accuracy to ensembles, kernel-SVM, deep nets).
- Efficiently optimize linear models: We exploit the structure of a massive feature space (all-subsequences) to quickly select good features.

SEQL: Linear Models for Symbolic Sequences

	SEQL Model:	
	Weight	<i>k</i> -mer
	796.6	TAGGCT
Goal is to learn a mapping:	402,5	CACAA
$f:S ightarrow\mathbb{R}$	-125.3	TCCG

Linear model (weighted sum of features): $f(x) = \beta^t x$, with β the feature weights and x the feature vector

SEQL: Linear Models for Symbolic Sequences

Add features iteratively with greedy coordinate descent + branchand-bound (bound the search for the best feature)

Algorithm 1 Coordinate Descent with Gauss Southwell Selection

1: Set $\beta^{(0)} = 0$

- 2: while termination condition not met do
- 3: Calculate objective function $L(\beta^{(t)})$
- 4: Find coordinate j_t with maximum gradient value
- 5: Find optimal step size η_{j_t}
- 6: Update $\beta^{(t)} = \beta^{(t-1)} \eta_{j_t} \frac{\partial L}{\partial \beta_{j_t}} (\beta^{(t-1)}) e_{j_t}$
- 7: Add corresponding feature to feature set
- 8: end while

How do we find coordinate j_t efficiently?

Key Ideas

Bound gradient of k-mer using only information about its sub-k-mers.

Example

Given: $s_p = "ACT"$ Calculate bound: $\mu(s_p)$ $s_1 = "ACTC" \rightarrow gradient(s_1) \leq \mu(s_p)$ $s_2 = "AACT" \rightarrow gradient(s_2) \leq \mu(s_p)$ $s_3 = "TACTG" \rightarrow gradient(s_3) \leq \mu(s_p)$

SEQL for Time Series Classification

Time Series \rightarrow Discretisation (SAX, SFA) \rightarrow Symbolic Sequence \rightarrow Sequence Learner (SEQL)

SEQL for Time Series Classification

Evaluation on Time Series Classification

Ranking of learning algorithms by Accuracy

UCR Archive (85 TSC datasets: sensors, images, ECG)

Top-3 models: 1. mtSS-SEQL+LR (our method, a linear model)

- 2. FCN (deep neural network)
- 3. COTE (ensemble of 35 classifiers)

Interpretability

• GunPoint dataset tracking hand movement w/o Gun

Interpretability

Coefficients	Subsequences
0.06584	cbaab
0.06247	db
0.06223	ddddb
0.06200	da
0.05972	bbbbbbbbbbbcdddd
-0.05372	aaaaaabbbb
-0.05439	bbbbaaaaaa

Salient Region for Classification Decision

Point (top) and Gun (bottom)

Github code for our work: <u>https://github.com/heerme?tab=repositories</u>

Recap SEQL

- Family of machine learning algorithms to train/predict (with) linear models for sequences
- Coordinate descent with Gauss-Southwell feature selection + Branch-and-bound for efficient feature search
- Sequence Classification (KDD08, KDD11): Logistic loss, I2-SVM loss
- Sequence Regression (ECMLPKDD17): Least-squares loss
- **Time Series Classification** (ICDE17): SEQL + SAX discretization
- Future Work:
 - Multi-dimensional Sequences

References

- [DMKD18, Under review] T Le Nguyen, S Gsponer, I Ilie, G Ifrim, Interpretable Time Series Classification using All-Subsequence Learning and Symbolic Representations in Time and Frequency Domains, DMKD18, 2018.
- [In prep] S Gsponer, B Smyth, G Ifrim, Symbolic Sequence Classification with Gradient Boosted Linear Models, 2018
- [ECMLPKDD17] S Gsponer,, B Smyth, G Ifrim. Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space, ECML-PKDD, 2017.
- [ICDE17] T Le Nguyen, S Gsponer, G Ifrim, Time Series Classification by Sequence Learning in All-Subsequence
 Space, ICDE, 2017.
- [PlosOne14] BP Pedersen, G Ifrim, P Liboriussen, KB Axelsen, MG Palmgren, P Nissen, C. Wiuf, C. Pedersen, Large scale identification and categorization of protein sequences using structured logistic regression, PloS one 9 (1), 2014.
- [KDD11] G Ifrim, C Wiuf, Bounded coordinate-descent for biological sequence classification in high dimensional predictor space, KDD, 2011.
- [KDD08] G. Ifrim, G. Bakir, and G. Weikum, Fast logistic regression for text categorization with variable-length ngrams, KDD, 2008.