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• Introduction to Text-to-Speech Synthesis

• Emotion Classification from Text

• Semi-automatic Emotion Labeling using 

Unsupervised Speech Clustering

• Summary and Future Directions
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Expressive TTS System with glottal features 

(Cabral et al., 2011)
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Text
Emotion 

prediction

Expressive TTS
Speech with 

emotion

Synthesis of Emotional Speech

• Emotion Prediction from Text:

• Machine Learning vs Dictionary-based 

• Problem with inter-speaker and intra-speaker variability

• Modeling and Generating Emotional Speech

• Lack of audiobook corpora with annotations of emotions

• Emotion perceived from speech and text may be different

• Acoustic correlates of emotion are still not well known
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• Motivation: Improve expressiveness of synthetic 

speech and convey essential non-linguistic 

information

• Focus on storytelling of fairy tales and emotions:

• Expressivity and emotions are fundamental for reader 

engagement

• Publicly available data resources

• Speech emotions from narrative style, in contrast to 

recordings of isolated sentences with acted emotions

• Goals:

• Predict emotions from text correctly

• Alleviate manual labeling in training of expressive voices in 

statistical parametric speech synthesis
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• Traditional approach using labeled speech emotions

• Several training techniques: Decision Trees, Acoustic Model 

Adaptation, etc.

• Problem with data preparation (time consuming and expensive)

• Limitation with inter-speaker variation and limited emotions

• Semi-automatic emotion labeling using speech clustering

• Clusters may contain different emotions

• Needs perceptual verification of expressions

• Limitations for many speakers and emotions

• Joint training of linguistic and expressive acoustic spaces

• Depends on correlation between acoustic and linguistic space

e.g. (Cheng, L. et al. 2013)

• Large number of expressions and avoids inter-speaker factors

• Limited control over synthesized emotions
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Classification of Emotion Polarity:
• Classification into 3 categories: Positive, Negative, Neutral

• Use of the tool SentiWordsTweets

 High accuracy

 Not fine-grained

Classification of Emotion Category:
• Emotion of phrase is predicted using lexicon-based method by selecting 

top rated emotion in sentence

• NRC Emotion Lexicon (8 emotions) and vocabulary from fairy tales

• 7 basic emotions: Angry, Sadness, Surprise, Joy, Fear, Disgust, Neutral

 Fine grained to multiple number of emotions

 Low accuracy
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Sentences Sentiment-polarity 
(range 0 to 1)

Polarity of Emotion
Category

Final Emotion Label

Juliet's dead Negative (score =0.35) Negative (Fear) Fear

I mean lovely Positive (score=0.59) Positive (Joy) Joy

What name did 
they give the child?

Negative (score=0.44) Positive (Joy) Neutral

Combination of Emotion Category and Polarity:
• A sentence is labeled into a specific category if the sentiment-polarity matches 

the polarity of the emotion
• Method to avoid ‘over-tagging’ of sentences with emotions:

1. The highest count of emotions is divided by the number of tokens
2. Select top rated emotion, above a given threshold
3. Threshold can be derived from the human annotations of emotion 

Examples of Emotion Prediction:
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Results:

Emotions Anger Sadness Joy Fear Surprise Disgust Neutral

Rate of Labels 
System

2.3% 2.8% 7.4% 1.9% 3.2% 0.8% 81.6%

Rate of Labels
Annotators

4.1% 3.4% 6.2% 2.9% 1.6% 0.3% 81.5%

F-scores System 0.2 0.3 0.38 0.18 0.09 0 0.86

F-scores
Annotator 1

0.41 0.39 0.53 0.32 0.38 0.09 0.71

Evaluation:
• Corpus of emotion annotations (2 annotators): 176 fairy tales from Grimm (80 tales), 

H.C. Andersen (77 tales) and Potter (19 tales)
• Grimm’s tales used for testing
• Extended NRC Emotion lexicon with vocabulary of the fairy tales
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Audiobook Corpus:

• Corpus of audiobooks released for the Speech Synthesis Blizzard Challenge 2016
• Performed sentence-level alignments between speech and text using Kaldi
• Selected emotional utterances from direct speech

Clustering Speech Styles:
• Self Organising Map (SOM)
• 605 acoustic features extracted with openSMILE
• Number of clusters was 50 based on informal listening tests

Mapping of Speech Clusters to Emotions:
• Performed emotion prediction from text on the sentences 

belonging to a specific cluster
• Compared rate of detected emotions in each cluster with the

overall distribution of emotions over all the clusters
• Select candidate clusters for each emotion based on distance 

between clusters and results of emotion prediction
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Using Sentiment Analysis to Make Emotion Classification More Restrictive
• Decrease the threshold applied to the sentiment-polarity values in order to select 

sentences with stronger ‘sentiment level’ for an emotion
• For example, with threshold lower than 0.35 gives 10 ‘strongly negative’ sad sentences
• Classification of emotions of the utterances solely on prediction from text

Distribution of Predicted Emotions (Cluster 11)

Expect that this cluster has a higher 
number of utterances with speech 
emotion “Anger”
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Emotion Labels Text Emotion 
Classification

Speech Emotion 
Classification from Text

Match between Perceived 
Emotion and Correct Text Labels

Anger 63% 50% 79%

Sadness 78% 42% 54%

Joy 76% 51% 67%

Fear 56% 34% 61%

Surprise 74% 68% 91%

Disgust 33% 33% 100%

Average 63% 46% 75%

Results of Automatic Emotion Classification:
• 50 random utterances labelled by the tool
• Author evaluated emotion labels by considering text without any context
• Author evaluated speech emotion by listening to utterances
• Calculated the rate of emotions perceived by the listener that matched the emotion 

predicted from text

 Strong correlation between the emotion prediction from text and the 
corresponding speech emotion

 Automatic prediction tool can be useful in selection of speech with emotions
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Synthesis of Speech with Emotions:
• Selected at least 20 utterances for each emotion (ranged from 26 to 54)
• HTS-2.3 system using MLLR adaptation 
• STRAIGHT vocoder, with F0 calculated with RAPT algorithm
• Festival for text analysis

Emotions Speech Synthesized with 
Emotion

Speech Synthesized with Neutral Voice

Joy

Fear

Surprise

Anger

Sad

Disgust
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Concluding Remarks:
• Method that combines information of lexicon-based sentiment analysis with sentiment-

polarity scores to improve accuracy of emotion labelling system
• Control over the number of sentences labelled with emotion by using threshold of 

sentiment polarity score
• Emotion predictions from text were close to those obtained by human annotation, 

indicating that some emotions are more difficult to predict (disgust, surprise, and fear)
• Emotion prediction tool can be helpful in the selection of subsets of audiobook data for 

building synthetic voices
• Integration of emotion prediction into HMM-based speech synthesizer

Future Directions:
• Conduct more extensive perceptual experiment to evaluate emotions of synthetic voice 

and correlation between emotions predicted from text and those conveyed in uttered 
speech

• Compare sentiment analysis method to other approaches, in particular non-dictionary 
based methods

• Integration into more advanced TTS systems
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