

Joint work with Florian Savoy, Yee Hui Lee, & Stefan Winkler

Soumyabrata Dev ADAPT Centre, Trinity College Dublin (Previously at Nanyang Technological University Singapore)

August 28, 2017

Why are we looking at clouds?

Fig: Illustration of cloud attenuation in satellite communication links. Image is archived from NASA, Glenn Research Center.

Ground-based Imaging

Satellites

Whole Sky Imagers (WSIs)

Whole Sky Imager Design

- Commercial WSIs are expensive(35K USD), have a low image resolution and sophisticated machinery.
- WAHRSIS: Wide Angle High-Resolution Sky Imaging System
 - Easy-to-design model ¹.
 - Low-cost (2000USD) and high image-resolution (18MP).

(a) WAHRSIS

(b) Captured image

¹S. Dev, F. M. Savoy, Y. H. Lee and S. Winkler, DIY Sky Imager For Weather Observation: A complete guide to build a ground-based sky imager using off-the-shelf components with automatic cloud coverage computation, SPM Student Design Project Series Documents, *IEEE Signal Processing Society*, 2016

Measured Solar Radiation

Solar Irradiance Fluctuation

Clouds are *mostly* responsible for solar irradiance fluctuations.

10:30 (758 W/m²) 10:32 (283 W/m²) 10:34 (714 W/m²)

Fig: Impact of clouds on direct solar irradiance.

Challenges

- In what ways can the rapid fluctuations of the solar irradiance be best captured?
- Existing solar estimation methods consist of using:
 - Daily temperature variations [Hargreaves and Samani].
 - Daily precipitation data [Hunt et al.].
 - Also including clear sky transitivity [Donatelli and Campbell], atmospheric transmission coefficient [Bristow and Campbell].

Challenges

- In what ways can the rapid fluctuations of the solar irradiance be best captured?
- Existing solar estimation methods consist of using:
 - Daily temperature variations [Hargreaves and Samani].
 - Daily precipitation data [Hunt et al.].
 - Also including clear sky transitivity [Donatelli and Campbell], atmospheric transmission coefficient [Bristow and Campbell].

We propose solutions by:

- Using ground-based sky camera images to estimate solar irradiance with highest accuracy;
- First step towards short-term solar energy generation forecasting.

Proposed Methodology

Fig: Cosine weighted hemispheric sampling process used to select the pixels used for solar irradiance estimation.

Modeling Irradiance

WAHRSIS images captured during the time period from January 2016 till August 2016 (7:00 am till 7:00 pm).

Fig: Modeling the solar radiation using the luminance computed from sky camera images.

Performance Evaluation

Fig: We show our estimated solar radiation (in blue), measured weather station data (in red), and the clear sky radiation (in black) as on 01-Sep-2016.

Our proposed 2 has the highest correlation (0.86), amongst all estimation methods.

²S. Dev, F. M. Savoy, Y. H. Lee, S. Winkler, Estimation of solar irradiance using ground-based whole sky imagers, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016.

Solar Forecasting

Unlike point-measurement devices, sky cameras provide additional transmission about cloud movement ³ and coverage.

Input at t - 2'

Vertical translation

Actual at t + 2'

Input at t'

Predicted at t + 2'

³S. Dev, F. M. Savoy, Y. H. Lee, S. Winkler, Short-term prediction of localized cloud motion using ground-based sky imagers, *Proc. TENCON 2016 - 2016 IEEE Region 10 Conference*, 2016.

- Using whole sky imagers to reliably estimate the total solar irradiance.
- Proposed model to track the fluctuations of solar irradiance.
- Useful in reliable and robust short-term solar energy forecasting.

Thank You!