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What is a function?

A function maps a set of inputs (numbers) to an output (number)

sum(2, 5, 4)→ 11
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What is a weightedSum function?

weightedSum([n1, n2, . . . , nm]︸ ︷︷ ︸
Input Numbers

, [w1,w2, . . . ,wm]︸ ︷︷ ︸
Weights

)

= (n1 × w1) + (n2 × w2) + · · ·+ (nm × wm)

weightedSum([3, 9], [−3, 1])

= (3×−3) + (9× 1)

= −9 + 9

= 0
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What is an activation function?

An activation function takes the output of our
weightedSum function and applies another mapping to it.
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What is an activation function?

activation =

logistic(weightedSum(([n1, n2, . . . , nm]︸ ︷︷ ︸
Input Numbers

, [w1,w2, . . . ,wm]︸ ︷︷ ︸
Weights

))

logistic(weightedSum([3, 9], [−3, 1]))

= logistic((3×−3) + (9× 1))

= logistic(−9 + 9)

= logistic(0)

= 0.5
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What is a Neuron?

The simple list of operations that we have just described defines
the fundamental building block of a neural network: the Neuron.

Neuron =

activation(weightedSum(([n1, n2, . . . , nm]︸ ︷︷ ︸
Input Numbers

, [w1,w2, . . . ,wm]︸ ︷︷ ︸
Weights

))
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What is a Neural Network?
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Where do the weights come from?
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Training a Neural Network

I We train a neural network by iteratively updating the weights

I We start by randomly assigning weights to each edge

I We then show the network examples of inputs and expected
outputs and update the weights using Backpropogation
so that the network outputs match the expected outputs

I We keep updating the weights until the network is working
the way we want
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Word Embeddings

Each word is represented by a vector of numbers that positions the
word in a multi-dimensional space, e.g.:

king =< 55,−10, 176, 27 >

man =< 10, 79, 150, 83 >

woman =< 15, 74, 159, 106 >

queen =< 60,−15, 185, 50 >
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Word Embeddings

vec(King)− vec(Man) + vec(Woman) ≈ vec(Queen)2

2
Linguistic Regularities in Continuous Space Word Representations (Mikolov et al., 2013)
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Recurrent Neural Networks

A particular type of neural network that is useful for processing
sequential data (such as, language) is a Recurrent Neural
Network.

Using an RNN we process our sequential data one input at a time.

In an RNN the outputs of some of the neurons for one input are
feed back into the network as part the next input.
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks

Output:

Input:

y1 y2 y3 yt yt+1

h1 h2 h3 · · · ht ht+1

x1 x2 x3 xt xt+1

0 / 0

Figure: RNN Unrolled Through Time
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Recurrent Neural Networks

1. RNN Encoders

2. RNN Language Models
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Encoders

Encoding:

Input:

h1 h2 · · · hm C

Word1 Word2 Wordm < eos >

0 / 0

Figure: Using an RNN to Generate an Encoding of a Word Sequence
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Language Models

Output:

Input:

⇤Word2 ⇤Word3 ⇤Word4 ⇤Wordt+1

h1 h2 h3 · · · ht

Word1 Word2 Word3 Wordt

0 / 0

Figure: RNN Language Model Unrolled Through Time
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Decoder

Output:

Input:

⇤Word2 ⇤Word3 ⇤Word4 · · · ⇤Wordt+1

h1 h2 h3 · · · ht

Word1

0 / 0

Figure: Using an RNN Language Model to Generate (Hallucinate) a
Word Sequence
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Encoder-Decoder Architecture

Decoder

Encoder

Target1 Target2 · · · < eos >

h1 h2 · · · C d1 · · · dn

Source1 Source2 · · · < eos >

0 / 0

Figure: Sequence to Sequence Translation using an Encoder-Decoder
Architecture
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Neural Machine Translation

Decoder

Encoder

Life is beautiful < eos >

h1 h2 h3 h4 C d1 d2 d3

belle est vie La < eos >

0 / 0

Figure: Example Translation using an Encoder-Decoder Architecture
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Conclusions

I An advantage of the encoder-decoder architecture is that
the system processes the entire input before it starts
translating

I This means that the decoder can use what it has already
generated and the entire source sentence when generating the
next word in the translation
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Conclusions

I There is ongoing research on what is the best way to present
the source sentence to the encoder

I There is also ongoing research on giving the decoder the
ability to attend to different parts of the input during
translation

I There is also interesting work on improving how these systems
handle idiomatic language
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Thank you for your attention

john.d.kelleher@dit.ie

@johndkelleher

www.comp.dit.ie/jkelleher

www.machinelearningbook.com
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