Fundamentals of Machine Learning
for Neural Machine Translation

Dr. John D. Kelleher
ADAPT Centre for Digital Content Technology
Dublin Institute of Technology, Ireland

1 Introduction

This papeiﬂ presents a short introduction to neural networks and how they are
used for machine translation and concludes with some discussion on the current
research challenges being addressed by neural machine translation (NMT) re-
search. The primary goal of this paper is to give a no-tears introduction to NMT
to readers that do not have a computer science or mathematical background.
The secondary goal is to provide the reader with a deep enough understanding
of NMT that they can appreciate the strengths of weaknesses of the technol-
ogy. The paper starts with a brief introduction to standard FEED-FORWARD
NEURAL NETWORKS (what they are, how they work, and how they are trained),
this is followed by an introduction to WORD-EMBEDDINGS (vector representa-
tions of words) and then we introduce RECURRENT NEURAL NETWORKS. Once
these fundamentals have been introduced we then focus in on the components
of a standard neural-machine translation architecture, namely: ENCODER NET-
WORKS, DECODER LANGUAGE MODELS, and the ENCODER-DECODER architec-
ture.

2 Basic Building Blocks: Neurons
Neural networks are from a field of research called machine learning. Machine
learning is fundamentally about learning functions from data. So the first thing

we need to know is what a function is:

A FUNCTION maps a set of input (numbers) to an output (number)

1n 2016 I was invited by the Furopean Commission Directorate-General for Translation
to present an tutorial on neural-machine translation at the Translating Europe Forum 2016:
Focusing on Translation Technologies held in Brussels on the 27" and 28t" October 2016.
This paper is based on that tutorial. A video of the tutorial is available at: https://webcast.
ec.europa.eu/translating-europe-forum-2016-jenk-1| the tutorial starts 2 hours into the
video (timestamp 2 : 00 : 15) and runs for just over 15 minutes.

https://webcast.ec.europa.eu/translating-europe-forum-2016-jenk-1
https://webcast.ec.europa.eu/translating-europe-forum-2016-jenk-1

For example, the function SUM will map the inputs 2, 5 and 4 to the num-
ber 11:

sum(2,5,4) — 11

The fundamental function we use when we are building a neural network is
call a WEIGHTED SUM function. This function takes in a sequences of numbers
as input and multiples each number by a weight and then sums the results of
these multiplications together.

WEIGHTEDSUM([n1,na, . . ., Ny, (W1, wa, . .., Wi])

Input Numbers Weights

=(ng X wy)+ (ng X wa) + -+ + (N X W)

For example, if we had a WEIGHTED SUM function that had the predefined
weights —3 and 1 and we passed it the numbers 3 and 9 as input then the
WEIGHTED SUM function would output the value 0:

WEIGHTEDSUM(([3, 9], [—3, 1])
=Bx-3)+(9x1)
=-9+9
=0

When we are learning a WEIGHTED SUM function from data we are actually
learning the weights that we apply to the inputs prior to the sum.

When we are making a neural network we generally take the output of the
WEIGHTED SUM function an pass it through another function which we call
an ACTIVATION function. An ACTIVATION function takes the output of our
WEIGHTED SUM function and applies another mapping to it. For technical rea-
sons that I won’t go into in this paper we generally want our ACTIVATION func-
tion to provide a non-linear mapping. We could use any non-linear function as
our ACTIVATION function. For example, a frequently used ACTIVATION function
is the LOGISTIC function (see Figure . The LOGISTIC function maps any num-
ber between +0co and —oo to the range 0 to 1. Figure [1f below illustrates the
mapping the LOGISTIC function would apply to the input values in the range
—10 to +10. Notice that the LOGISTIC function maps the input value 0 to the
output value of 0.5.

So, if we use a LOGISTIC function as our non-linear mapping then our ACTI-
VATION function is defined as the output of a WEIGHTED SUM function passed
through the LOGISTIC function:

ACTIVATION =
LOGISTIC(WEIGHTEDSUM(([11, N2, . - -y M], (W1, Wa, . . ., Wy]))

Input Numbers Weights

logistic(x)
0.75 1.00

0.50

0.25

0.00

Figure 1: A Graph of the Logistic Function Mapping from input x to output
logistic(x)

The following example shows how we can take the output of a WEIGHTED SUM
and pass it through a logistic function:

LOGISTIC(WEIGHTEDSUM([3, 9], [-3, 1]))
= LOGISTIC((3 x —3) + (9 x 1))
= LOGISTIC(—9 + 9)
= LOGISTIC(0)
=0.5

The simple list of operations that we have just described defines the funda-
mental building block of a neural network: the NEURON.

NEURON =
ACTIVATION(WEIGHTEDSUM(([n1, N2, . . . , Ny, (w1, wa, . . ., wiy]))

Input Numbers Weights

3 What is a Neural Network?

We can create a neural network by simply connecting together lots of neurons.
If we use a circle to represent a neuron, squares to represent locations in memory
where we store data without transforming it, and arrows to represent the flow of
information between neurons we can then draw a feed forward neural network as
shown in Figure 2| The interesting thing to note in this figure is that the output
from one neuron is often the input to another neuron. Remember, the arrows
indicate the flow of information between neurons, if there is an arrow from one
neuron to another neuron then the output of the first neuron is passed as input

Hidden !
Layer

Input
Layer

11

Figure 2: A feed-forward neural network

to the second neuron. Notice, also, that in our feed forward network there are
some cells that are inbetween the input and output cells. These cells are hidden
from view and are called the HIDDEN UNITS. We will discuss these cells in more
detail later when we are explaining RECURRENT NEURAL NETWORKS.

It is probably worth emphasising that even when we create a neural network
each neuron in the network (circle) is still doing a very simply set of operations:

1. multiply each input by a weight,
2. add together the results of the multiplications

3. then push this result through our non-linear ACTIVATION function

4 Where do the weights come from?

The fundamental function in neural network is the WEIGHTED SUM function.
So it is important to understand how the weights used in the WEIGHTED SUM
function are represented in a neural network and where these weights come from.
In a neural network the weight applied to each input in a neuron is determined
by the edge the input comes into the neuron on. So each edge in the network
has a weight associated with it, see Figure

When we are training a neural network from data we are searching for the
best set of weights for the network. We train a neural network by iteratively
updating the weights in the network. We start by randomly assigning weights
to each edge. We then show the network examples of inputs and expected
outputs. Each time we show the network an example we compare the output of
the network with the expected output. This comparison gives us a measure of

| Hidden !

1 Layer |

1

1 ! w7
[| wl H1 |
y Input | w2 mo--- .
1 Layer ! | Output

4 ! w10 i !
: | wa , : Layer :
| ! | o X .
| i H2 M i » o1)!
1 1 : 1 9 | 1
X) w3 ! ! h ! !
I

: 2 | : 1 \ |
I ; w3 o H3 T (02 :
I 1

i X wil I

[N |, S

w6
wi2

Figure 3: Illustration of a feed-forward neural network showing the weights
associated with the edges in the network

the error of the network on that example. Using the measure of error and an
algorithm called BACKPROPOGATION we then update the weights in the network
so that the next time the network is shown the input for this example the output
of the network will be closer to the expected ouput (i.e., the networks error will
be reduced). We keep showing the network examples and updating the weights
until the network is working the way we want it to.

5 Word Embeddings

One problem with using neural networks for language processing is that we
need to convert language into a numeric format. There are lots of different
ways we could do this but the standard way of doing this at the moment is to
use a WORD EMBEDDING representation. The basic idea is that each word is
represented by a vector of numbers that embeds (or positions) the word in a
multi-dimensional space. For example, assuming we are using a 4 dimensional
space for our embeddingtﬂ then we might define the following word embeddings

2Note that normally we would use a much higher dimensional spaces for embeddeings; for
example, 50, 100 or 200 dimensions.

WOMAN QUEENS
/ AUNT
MAN / KINGS
UNCLE
QUEEN QUEEN
KING KING

Figure 4: Illustration showing how vector offsets between word-embedding vec-
tors can encode semantic relationships between words. These figures are taken
from [6].

for the words king, man, woman, and queen:

king =< 55,-10,176,27 >
man =< 10,79, 150,83 >

woman =< 15,74,159,106 >

queen =< 60, —15,185,50 >

Looking at these embeddings you might be wondering what is the meaning of
these numbers. The first thing to be aware of is that the absolute values of these
numbers don’t mean anything. What is important here is the relative position of
the words relative to each other. When we are using a word embedding different
directions in the multi-dimensional space encode different semantic relationships
between words. Figure [4]illustrate how we can use different directions to encode
semantics relationships between words: the left panel shows vector offsets for
three word pairs illustrating the gender relation and the right panel shows a
different semantic relationship, in this case the singular/plural relation for two
words pairs.

In high-dimensional space, multiple (semantic) relations can be embedded
for a single word. We do not define these word embeddings manually. Instead,
we use specialized neural networks to learn these word vectors from corpora. I
won’t explain these neural networks in this paper, but see [2] and [5] for more
information on this topic. However, once we have learnt our word embeddings
we can use these embeddings to represent words as vectors of numbers and we
can now train neural networks to process language. In the rest of this paper
when we are referring to a word you can consider that the word is presented to
the neural network as a vector of numbers.

6 Recurrent Neural Networks

We can make different types of neural networks by changing the topology of
the network. A particular type of neural network that is useful for processing
SEQUENTIAL data (such as, language) is a RECURRENT NEURAL NETWORK
(RNN). Using an RNN we process our sequential data one input at a time. In
an RNN the outputs of some of the neurons for one input are feed back into
the network as part the next input. To create a recurrent neural network we
augment our neural network with a memory buffer, as shown in Figure 5| Note
that we generally create an RNN model by extending a feed-forward neural
network that has just one hidden layer.

: Input :
1 Layer |
1 e
ol | Hidden !
1 1 Layer :
By ! l
1
l\%enfifofy HI)i
uffer | NN 0 "\ AN e——-- R
X | I Output 1
1 1 l
Ml | X X Layer X
! | ! 1
‘ | I
H2 | o1),
! | |
1 | S —
M2 : 1
\ 1
|
H3 !
! |
M3 f-----

Figure 5: Adding a memory buffer to a feed-forward neural network with one
hidden layer

Each time we present an input to the network the output from the hidden
units for that input are stored in the memory buffer overwriting whatever was in
the memory, see Figure[f] At the next time step the data stored in the buffer is
merged with the input for that time step, see Figure[7] So as we move through
the sequence we have a constant cycle of storing the state of the network and
using that state at the next time step, see Figure

In order to keep the rest of the graphics in the paper legible I won’t draw
all the separate neurons and connections in the remaining network illustrations.
Instead T will just represent each layer of neurons as a rounded box and show
the flow of information between layers using arrows. Also so as to save space I
will refer to the input layer as x;, the hidden layer as h;, the output layer as y;,
and the memory layer as h;—;. The image on the left of Figure [0]illustrates the
use of rounded boxes to represent layers of neurons and the flow of information

Input

! 1
! I
1+ Layer |
1 e
ol | Hidden !
1 1 Layer :
[Bpmp_— ! l
1
N]I;'?fory b HI |
uffer | O\ N "\ AN ee-=-
: 1 1 Output 1
1 1
Mi | : X Layer X
! I i !
V | I
H2 | o1),
| 4 X | I
1 | S —
M2 1
X |
— p(H3)
| 1
1
M3 oo/ - -

| 1
i Input |
1+ Layer |
1 e
ol | Hidden !
1 1 Layer :
[Bpmp_— ! 1
1
Nllge'?fory b(HI |
uffer | \ N _—~—~ 'U N = e-==-- R
: 1 1 Output 1
1 1
M1 | | : X Layer X
! I i I
V | |
H2 | o1),
! 1 1
! I L=l
M2 : 1
| 1
|
H3 !
! |
M3 [+ f-----

Figure 7: Merging the memory buffer with the next input.

through an RNN using this representation and the image on the right of Figure
[0 shows the same network using the shorter naming convention.

Using this shorthand notation we can illustrate the flow of information
through an RNN as it processes a sequence of inputs, see Figure [I0] An inter-

Input

| 1
! I
1+ Layer |
1 e
Il | Hidden !
1 1 Layer :
[! |
1
"Buffer Bl)
uffer | \ N\ 7~ '"\U S~ = e===- "
| 4 : 1 1 Output 1
1 1
Ml 1 : X Layer X
! | | 1
. | I
H2 | o1),
| 4 X | I
1 | S —
M2 1
X I
p(H3)
’ | 1
1
M3 L=/ -

Figure 8: The cycle of writing to memory and merging with the next input as
the network processes a sequence.

‘ Output ‘ Yt

 SEmm— SEmm—
Hidden h;
—’/ —’/

— r \
Input htil -
~— \. J

Figure 9: Recurrent Neural Network

esting thing to note here is that there is a path connecting each h (the hidden
layer for each input) to all the previous hs. So the hidden layer in an RNN at
each point in time is dependent on its past. In other words, the network has
a memory so that when the network is making a decision at time step ¢ it can
remember what it has seen previously. This allows the model to model data that
depends on previous data - such as sequences. And, this is the reason why an
RNN is useful for language processing: having a memory of the previous words
that have been seen in a sequence (sentence) is useful for processing language.

Output: | w1 y2 y3 Yt Yet1
J N e 1
hy — hy =~ h3 — .- — h; — hy
J (. J - J (. J - J
I T I I !
Input: X1 X2 X3 X X¢+1

Figure 10: An RNN Unrolled Through Time

We can use RNNs to process language in a number of different ways and in
the following sections I am going to introduce two ways of using them: RNN
Encoders and RNN Language Models.

7 Encoders

Similar to the way we can learn vector representations of words, we can use
an RNN to learn vector representations of sequences of words. To do this
we first learn a set of word embeddings (vector representations). These word
embeddings then remained fixed for the rest of the encoding. Then to generate
an encoding for a sequence of words we input each word in the sequence in
turn into an RNN network (using the word embedding representations of the
words as our input representation to the network) and then we use the state of
the hidden layer of the RNN after we have input the last word in the sequence
as a representation for the sequence. Using an RNN in this was is known as
ENCODING. Figure[Id]illustrates using an RNN encoder to generate an encoding
for a sequence of words.

8 Decoders (Language Models)

A language model is a computational model that can take a sequence of words
as input and return a probability distribution over a vocabulary that defines
the probability of each of the words in the vocabulary being the next word in
the sequence. We can train and RNN language model by training the model
to predict the next word in a sequence. Figure illustrates how information
flows through an RNN language model as it processes a sequence of words and
attempts to predict the next word in the sequence after each input. Note in this

10

Encoding: h; h> oo —» h, C

Input: Word; Word, Word,, < eos >

Figure 11: Using an RNN to Generate an Encoding of a Word Sequence: the
symbol < eos > is a special symbol used to mark the end of a sequence, the
box labelled C holds the embedding for the word sequence.

image that the * marks indicate the next word as predicted by the system. All
going well «Wordy = Wordsy but if the system makes a mistake this will not be
the case.

Output: | * Wordg] * Word3] * Word4] M

Input: | Word; Word, Word; Word;

Figure 12: RNN Language Model Unrolled Through Time

When we have trained a language model we can get it to hallucinate language
by giving it an initial word and then inputing the word that the language model
predicts as the most likely next word as the next word into the model etc. Figure
shows how we can use an RNN language model to generate (hallucinate) text
by feeding the words the language model predicts back into the model. If the
language model is initialised with the output of an ENCODER (i.e., if the language
model is initialised with a vector representation of a sequence of words) then we
call the RNN language model a DECODER.

11

Output: | *Word, * Word;;} * Word4} e xWordy 1

r\r\‘\\i
:

Input: | Word;

Figure 13: Using an RNN Language Model to Generate (Hallucinate) a Word
Sequence

9 Neural Machine Translation

We now have all the pieces we need to do machine translation (MT) with neural
networks. To do MT with neural networks we connect an RNN encoder with
a RNN decoder language model. The RNN encoder processes the sentence
in the source language word by word and generates a representation of the
input sentence. The RNN decoder (or language model) takes the output from
the encoder as input and generates the translation of the input sentence word
by word. Figure illustrates how we can connect the encoder and decoder
models together. This model architecture for machine translation is known as
an ENCODER-DECODER model, see [9] for more details.

Encoder \

O [e e

Decoder
Source; Sources e < eos >

Figure 14: Sequence to Sequence Translation using an Encoder-Decoder Archi-
tecture

12

Figure [15]illustrates how an ENCODER-DECODER MT system would generate
an English translation of a French sentence. The ENCODER processes the French
sentence word by word including the < eos > (END OF SEQUENCE) symbol.
Notice that in this example we pass the source sentence in backwards, doing
this has been found give better translation results. We then pass the encoded
representation of the source sentence to the DECODER (language model) and we
let this language model generate the translation word by word until it outputs
an < eos > (END OF SEQUENCE) symbol.

beautiful < eos >

Encoder T \ T \ T \ T

] L T

T T Decoder

belle est vie La < eos >

Figure 15: Example Translation using an Encoder-Decoder Architecture

10 Conclusions

An advantage of the ENCODER-DECODER architecture is that the system pro-
cesses the entire input before it starts translating. This means that the decoder
can use what it has already generated and the entire source sentence when gen-
erating the next word in the translation. There is ongoing research on what is
the best way to present the source sentence to the encoder. There is also ongo-
ing research on giving the decoder the ability to attend to different parts of the
input during translation. This is done by extending the encoder-decoder archi-
tecture with an attention module that acts as an alignment mechanism between
the words in the input and output sentences, see [I] and [4] for more on this.
Finally, it is worth noting that data driven computational models tend to learn
the average (or most common) behaviour found in the data. In fact, the real
challenge in machine learning is to create models that model the real variation
in the data (while excluding the noise in the data) and hence make predictions
away from the central tendency of the data when it is appropriate [3]. The im-
plication of this for machine translation systems (be they statistical models or
neural machine translation models) is that these models tend to struggle with
non-compositional, figurative, or idiomatic language (see for example [7,[8]). So
one of the challenges facing neural machine translation researchers is to develop
translation systems that handle these forms of language.

13

11 Acknowledgements:

This work was partly supported by the ADAPT centre. The ADAPT Centre is
funded under the SFI Research Centres Programme (Grant 13/RC/2106) and
is co-funded under the European Regional Development Fund.

References

[1]

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
ICLR. 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.
A neural probabilistic language model. The Journal of Machine Learning
Research, 3:1137-1155, 2003.

John D. Kelleher, Brian Mac Namee, and Aoife D’Arcy. Fundamentals of
machine learning for predictive data analytics: algorithms, worked examples,
and case studies. MIT Press, 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective
approaches to attention-based neural machine translation. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pages 1412-1421, Lisbon, Portugal, September 2015. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities
in continuous space word representations. In The 2013 Conference of the
North Americal Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), pages 746751, 2013.

Giancarlo D. Salton, Robert J. Ross, and John D. Kelleher. An Empir-
ical Study of the Impact of Idioms on Phrase Based Statistical Machine
Translation of English to Brazilian-Portuguese. In Third Workshop on Hy-
brid Approaches to Translation (HyTra) at 14th Conference of the European
Chapter of the Association for Computational Linguistics, 2014.

Giancarlo D. Salton, Robert J. Ross, and John D. Kelleher. Evaluation of a
substitution method for idiom transformation in statistical machine transla-
tion. In The 10th Workshop on Multiword Expressions (MWE 2014) at 14th
Conference of the Furopean Chapter of the Association for Computational
Linguistics. 2014.

14

[9] Tlya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 3104-3112. 2014.

15

	Introduction
	Basic Building Blocks: Neurons
	What is a Neural Network?
	Where do the weights come from?
	Word Embeddings
	Recurrent Neural Networks
	Encoders
	Decoders (Language Models)
	Neural Machine Translation
	Conclusions
	Acknowledgements:

