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Electricity Demand Forecasting

Electricity is a special commodity

It cannot be stored efficiently (in large quantities)

It looses value when being moved (line losses)

Demand forecasting is critical

Operations, bidding, demand response, maintenance, planning, etc.

The game is changing

Distributed renewable generation

Higher volatility on markets

Increased number of participants
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Demand Forecasting Methods

(Non-)linear variants of least-squares, ARMAX, fuzzy logic, etc.

Black-box models based on neural networks [Hippert et al., 2001]

Generalized Additive Models (GAM)

Great performance [Fan and Hyndman, 2012, Ba et al., 2012]

Efficient and scalable training algorithms

Interpretability of the model

Hippert, HS, et al.
Neural networks for short-term load forecasting: A review and evaluation.
Power Systems, IEEE Transactions on, 16(1):44–55, 2001.

Fan, S and Hyndman, R.
Short-term load forecasting based on a semi-parametric additive model.
Power Systems, IEEE Transactions on, 27(1):134–141, 2012.

Ba, A, et al.
Adaptive learning of smoothing functions: application to electricity load forecasting.
In Advances in Neural Information Processing Systems 25 (NIPS 2012), pages 2519–2527. 2012.
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Demand Forecasting using Kernel Methods

In 2001, kernel-based support vector regression won EUNITE
(European Network on Intelligent Technologies for Smart Adaptive
Systems) demand forecasting competition [Chen et al., 2004]

Later, kernel-based regularizations and support vector
techniques were successfully used
[Espinoza et al., 2007, Hong, 2009, Elattar et al., 2010]

Chen, B, et al.
Load forecasting using support vector machines: A study on EUNITE competition 2001.
Power Systems, IEEE Transactions on, 19(4):1821–1830, 2004.

Espinoza, M, et al.
Electric load forecasting.
Control Systems, IEEE, 27(5):43–57, 2007.

Hong, WC.
Electric load forecasting by support vector model.
Applied Mathematical Modelling, 33(5):2444–2454, 2009.

Elattar, E, et al.
Electric load forecasting based on locally weighted support vector regression.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
40(4):438–447, 2010.
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Electric Demand Forecasting

ŷ = f (t, d , c , yl , ul , j , sj) ,

Time/Calendar features

t ∈ [0, 24) is the time of day expressed in hours,

d ∈ {1, 2, . . . , 365, 366} is the day of the year,

c is the type of day, e.g. Monday to Sunday,

Dynamic features

yl is a real vector containing lagged values of the electric demand,

ul is a real vector containing measurements of lagged values of
exogenous variables other than the demand (such as temperature),

Meter features

j is the meter ID in the electricity network,

sj is a vector of features describing the demande measured at j .
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Solving Multiple Demand Forecasting Problems

Consider m smart meters, indexed by j

Goal: learn {fj : X → R}1≤j≤m from datasets (xij , yij) ∈ X × R.
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Optimisation Problem

Letting f : X → Rm the function with components fj , we minimize

R(f ,L) =
m∑
j=1

`j∑
i=1

(yij − fj(xij)))2 + λ‖f ‖2HL
, (1)

where λ > 0 is a regularization parameter, and HL is a Reproducing Kernel
Hilbert Space (RKHS) of vector-valued functions with (matrix-valued) kernel

H(xi , xj ) = K(xi , xj ) · L , (2)

K : X × X → R is the input kernel, and L ∈ Rm×m is the output kernel.

Representer theorem: there exist functions f̂j minimizing
R(f ,L) in the form:

f̂j(x) =
m∑

k=1

Ljk

`k∑
i=1

cikK (xik , x). (3)
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Fixing L = I: Independent Kernel Ridge Regression
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Learning L = I: Output Kernel Learning

Remark: B = (bij ) is a Cholesky factor of L
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Output Kernel Learning

Joint optimization problem

min
L∈Sm,p

+

min
f∈HL

R(f ,L) + λtr(L) ,

where Sm,p
+ is the cone of p.s.d. matrices with rank ≤ p.

Re-indexing the observations {xi}i=1,...,`, the solution becomes

f̂j(x) =

p∑
k=1

bjkgk(x), gk(x) =
∑̀
i=1

aikK (xi , x) ,

where

{
bjkcoefficients form a low-rank factor of L ,

gk functions can be seen as modes or typical profiles .

It is sufficient to store (`+ m)p parameters, which can be much
smaller than

∑m
j=1 `j .
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Multiple Seasonalities in Electricity Demand

Figure: French National Demand (Réseau de Transport d’Électricité data)
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Capturing Demand Seasonalities with Kernels

Time-of-day kernel

K t(t1, t2) = exp (−hT (|t1 − t2|)/σt) , (4)

Day-of-year kernel

K d(d1, d2) = exp (−hD(|d1 − d2|)/σd) , (5)

where hP (x) = min{x, P − x} is a change of variable that yields P-periodic kernels over the square

[0, P]2. In our experiment, σt and σd were respectively set to 4 hours and 120 days.

Day-type kernel

K c(c1, c2) =

{
1 if c1 = c2

0 if c1 6= c2.
. (6)
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Kernels for Electric Demand Forecasting

To define K ((t1, d1, c1), (t2, d2, c2)), we combine the basis kernels

Additive Models

K t(t1, t2) + K d(d1, d2) , (7)

K t(t1, t2) + K d(d1, d2) + K c(c1, c2) , (8)

Semi-Additive Models

K d(d1, d2) + K t(t1, t2) · K c(c1, c2) , (9)(
K t(t1, t2) + K d(d1, d2)

)
· K c(c1, c2) , (10)

Multiplicative Models

K t(t1, t2) · K d(d1, d2) , (11)

K t(t1, t2) · K d(d1, d2) · K c(c1, c2) . (12)
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Commission for Energy Regulation (CER) Data

6435 smart meters

536 days (Jul 14, 2009 - Dec 31, 2010)

Half-hour sampling

3 groups: residential, SME, others

19 / 32
N



Commission for Energy Regulation (CER) Data

6435 smart meters

536 days (Jul 14, 2009 - Dec 31, 2010)

Half-hour sampling

3 groups: residential, SME, others

19 / 32
N



Commission for Energy Regulation (CER) Data

6435 smart meters

536 days (Jul 14, 2009 - Dec 31, 2010)

Half-hour sampling

3 groups: residential, SME, others

19 / 32
N



Commission for Energy Regulation (CER) Data

6435 smart meters

536 days (Jul 14, 2009 - Dec 31, 2010)

Half-hour sampling

3 groups: residential, SME, others

19 / 32
N



Pre-processing

Removed two corrupted meters

Corrected DST measurements

Downsampled to 3-hour resolution

Final dataset:

m = 6433 smart meters

` = 4288 time slots

Customer group Meters Sparsity

Residential 4225 0.028%
Industrial (SME) 485 0.035%
Others 1723 17%
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Learning the Models

Data split

1 year (2920 obs.) used for training (80%) and validation (20%)

∼ 0.5 year (1368 obs.) used for testing

Independent Kernel Ridge Regression using the 6 kernels

Output Kernel Learning using MM2

1 model for {residential} ∪ {others}, p = 200 to fit in memory

1 model for {SME}, full rank (p = 485)
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Qualitative Analysis
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Figure: Measured load (blue), indep. KRR (red) and multi-task OKL
(black) forecasts for the aggregated demand (top), a single SME meter
(middle), and a single residential meter (bottom).
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Performance Metrics (1/2)

Given a group of meters G and observation i , we define

Absolute percentage error (APE)

APE(i ,G) = 100

∣∣∣∣∣
∑

j∈Gi yij −
∑

j∈Gi fj(ti , di , ci )∑
j∈Gi yij

∣∣∣∣∣ , (13)

where Gi is the subset of meters with available observations at i .

Normalized absolute error (NAE)

NAE(i ,G) =

∑
j∈Gi |yij − fj(ti , di , ci )|∑

j∈Gi yij
, (14)
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Performance Metrics (2/2)

Mean absolute percentage error (MAPE)

MAPE(G) =
1

# T

∑
i∈T

APE(i ,G) , (15)

Mean normalized absolute error (MNAE)

MNAE(G) =
1

# T

∑
i∈T

NAE(i ,G) . (16)
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Prediction Accuracy (1/2)
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1 Multiplicative kernels outperform (semi-)additive models.

Multiplicative kernels lead to a stricter selection of training obs.

EUNITE winners discarded ≥ 90% of the dataset.

2 Multi-task OKL outperforms independent kernel ridge regression

The multi-task approach efficiently exploits the similarities

44% improvement of σAPE for SME against 2nd best method
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Prediction Accuracy (2/2)
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Figure: p-values of Welch t-test between the overall accuracies of all
methods on the CER dataset
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Basis Load Profiles gk

Jul 14, 09 Jul 18, 09 Jul 22, 09 Jul 26, 09 Jul 30, 09 Aug 03, 09 Aug 07, 09

Figure: CER Data: Typical load profiles displayed over the horizon of one
month, obtained from a low-rank OKL model with p = 10.
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Number of Parameters

In this experiment, the OKL model is 4.24 times more compact.

Single-task: # params = # obs. =
∑m

j=1 `j ≈ 1.3 · 107

Multi-task OKL: # params = (`+ m)p ≈ 3 · 106
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Relationships between Smart Meters
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Figure: CER data: entries of the normalized output kernel Ln ∈ Rm×m for
a subset containing 50 residential and 50 SME (small or medium
enterprise) customers. (Ln)ij =

Lij√
Lii×Ljj

, i , j = 1, . . . ,m.
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Contributions

1 We formulated the problem of forecasting the demand measured on
multiple lines of the network as a multi-task problem.

2 We designed kernels able to capture the seasonal effects present
in electricity demand data.

3 We exposed the performance limits of the very popular additive
models, showing that they are often outperformed by multiplicative
kernel models.

4 We showed how MTL can be used to gain insights and
interpretability on real demand data
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Thank You

Any question?

Contact details

Jean-Baptiste Fiot

jean-baptiste.fiot@centraliens.net
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