Electricity Demand Forecasting using Multi-Task Learning

Jean-Baptiste Fiot, Francesco Dinuzzo

Dublin Machine Learning Meetup - July 2017

Outline

6 Conclusion

Outline

2 Problem Formulation

3 Kernels

5 Conclusion

Electricity Demand Forecasting

- Electricity is a special commodity
 - It cannot be stored efficiently (in large quantities)
 - It looses value when being moved (line losses)
- Demand forecasting is critical
 - Operations, bidding, demand response, maintenance, planning, etc.
- The game is changing
 - Distributed renewable generation
 - Higher volatility on markets
 - Increased number of participants

Demand Forecasting Methods

- (Non-)linear variants of least-squares, ARMAX, fuzzy logic, etc.
- Black-box models based on neural networks [Hippert et al., 2001]
- Generalized Additive Models (GAM)
 - Great performance [Fan and Hyndman, 2012, Ba et al., 2012]
 - Efficient and scalable training algorithms
 - Interpretability of the model

Short-term load forecasting based on a semi-parametric additive model. Power Systems, IEEE Transactions on, 27(1):134–141, 2012.

Ba, A, et al.

Adaptive learning of smoothing functions: application to electricity load forecasting. In Advances in Neural Information Processing Systems 25 (NIPS 2012), pages 2519–2527. 2012.

Demand Forecasting using Kernel Methods

- In 2001, kernel-based support vector regression won EUNITE (European Network on Intelligent Technologies for Smart Adaptive Systems) demand forecasting competition [Chen et al., 2004]
- Later, kernel-based regularizations and support vector techniques were successfully used [Espinoza et al., 2007, Hong, 2009, Elattar et al., 2010]

Chen, B, et al. Load forecasting using support vector machines: A study on EUNITE competition 2001. Power Systems, IEEE Transactions on, 19(4):1821–1830, 2004.

Espinoza, M, et al. Electric load forecasting. Control Systems, IEEE, 27(5):43–57, 2007.

Hong, WC. Electric load forecasting by support vector model. Applied Mathematical Modelling, 33(5):2444–2454, 2009.

Elattar, E, et al.

Electric load forecasting based on locally weighted support vector regression. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(4):438–447, 2010.

Outline

1 Introduction

3 Kernels

5 Conclusion

Electric Demand Forecasting

$$\hat{y} = f(t, d, c, y_l, u_l, j, s_j),$$

- Time/Calendar features
 - $t \in [0, 24)$ is the time of day expressed in hours,
 - $d \in \{1, 2, \dots, 365, 366\}$ is the day of the year,
 - c is the type of day, e.g. Monday to Sunday,
- Dynamic features
 - y_l is a real vector containing lagged values of the electric demand,
 - *u_l* is a real vector containing measurements of lagged values of exogenous variables other than the demand (such as temperature),
- Meter features

- *j* is the meter ID in the electricity network,
- s_j is a vector of features describing the demande measured at j.

Electric Demand Forecasting

$$\hat{y} = f(t, d, c, y_I, u_I, j, s_j),$$

- Time/Calendar features
 - $t \in [0, 24)$ is the time of day expressed in hours,
 - $d \in \{1, 2, \dots, 365, 366\}$ is the day of the year,
 - c is the type of day, e.g. Monday to Sunday,
- Dynamic features
 - y_l is a real vector containing lagged values of the electric demand,
 - *u_l* is a real vector containing measurements of lagged values of exogenous variables other than the demand (such as temperature),
- Meter features

- *j* is the meter ID in the electricity network,
- s_j is a vector of features describing the demande measured at j.

Electric Demand Forecasting

$$\hat{y} = f(t, d, c, y_l, u_l, j, s_j),$$

- Time/Calendar features
 - $t \in [0, 24)$ is the time of day expressed in hours,
 - $d \in \{1,2,\ldots,365,366\}$ is the day of the year,
 - c is the type of day, e.g. Monday to Sunday,
- Dynamic features
 - y_l is a real vector containing lagged values of the electric demand,
 - u_l is a real vector containing measurements of lagged values of exogenous variables other than the demand (such as temperature),

Meter features

- *j* is the meter **ID** in the electricity network,
- s_j is a vector of features describing the **demande measured** at j.

Solving Multiple Demand Forecasting Problems

• Consider *m* smart meters, indexed by *j*

.

• Goal: learn $\{f_j : \mathcal{X} \to \mathbb{R}\}_{1 \le j \le m}$ from datasets $(x_{ij}, y_{ij}) \in \mathcal{X} \times \mathbb{R}$.

Optimisation Problem

• Letting $f : \mathcal{X} \to \mathbb{R}^m$ the function with components f_j , we minimize

$$R(f, \mathbf{L}) = \sum_{j=1}^{m} \sum_{i=1}^{\ell_j} (y_{ij} - f_j(x_{ij})))^2 + \lambda \|f\|_{\mathcal{H}_{\mathbf{L}}}^2,$$
(1)

where $\lambda > 0$ is a regularization parameter, and \mathcal{H}_{L} is a Reproducing Kernel Hilbert Space (RKHS) of vector-valued functions with (matrix-valued) kernel

$$H(x_i, x_j) = K(x_i, x_j) \cdot \mathbf{L}, \qquad (2)$$

 $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is the input kernel, and $L \in \mathbb{R}^{m \times m}$ is the output kernel.

• **Representer theorem**: there exist functions \hat{f}_j minimizing $R(f, \mathbf{L})$ in the form:

$$\hat{f}_{j}(x) = \sum_{k=1}^{m} \mathbf{L}_{jk} \sum_{i=1}^{\ell_{k}} c_{ik} \mathcal{K}(x_{ik}, x).$$
(3)

Fixing L = I: Independent Kernel Ridge Regression

. . . .

f m/mm/mm/

Learning L = I: Output Kernel Learning

Remark: $\mathbf{B} = (b_{ij})$ is a Cholesky factor of L

Output Kernel Learning

Joint optimization problem

$$\min_{\mathbf{L}\in\mathbb{S}^{m,p}_+} \quad \min_{f\in\mathcal{H}_{\mathbf{L}}} \quad R(f,\mathbf{L})+\lambda tr(\mathbf{L})\,,$$

where $\mathbb{S}^{m,p}_+$ is the cone of p.s.d. matrices with rank $\leq p$.

• Re-indexing the observations $\{x_i\}_{i=1,...,\ell}$, the solution becomes

$$\hat{f}_j(x) = \sum_{k=1}^p b_{jk} g_k(x), \quad g_k(x) = \sum_{i=1}^\ell a_{ik} K(x_i, x),$$

where $\begin{cases} b_{jk} \text{coefficients form a low-rank factor of } L, \\ g_k \text{functions can be seen as modes or typical profiles}. \end{cases}$

• It is sufficient to store $(\ell + m)p$ parameters, which can be much smaller than $\sum_{j=1}^m \ell_j$.

Outline

1 Introduction

2 Problem Formulation

5 Conclusion

Multiple Seasonalities in Electricity Demand

Figure: French National Demand (Réseau de Transport d'Électricité data)

Capturing Demand Seasonalities with Kernels

• Time-of-day kernel

$$K^{t}(t_{1}, t_{2}) = \exp\left(-h_{T}(|t_{1} - t_{2}|)/\sigma_{t}\right),$$
 (4)

Day-of-year kernel

$$K^{d}(d_{1}, d_{2}) = \exp\left(-h_{D}(|d_{1} - d_{2}|)/\sigma_{d}\right), \qquad (5)$$

where $h_P(x) = \min\{x, P - x\}$ is a change of variable that yields *P*-periodic kernels over the square $[0, P]^2$. In our experiment, σ_t and σ_d were respectively set to 4 hours and 120 days.

Day-type kernel

$$\mathcal{K}^{c}(c_{1}, c_{2}) = \begin{cases} 1 & \text{if } c_{1} = c_{2} \\ 0 & \text{if } c_{1} \neq c_{2}. \end{cases}$$
(6)

Kernels for Electric Demand Forecasting

To define $K((t_1, d_1, c_1), (t_2, d_2, c_2))$, we combine the basis kernels

Additive Models

$$K^{t}(t_{1}, t_{2}) + K^{d}(d_{1}, d_{2}),$$
 (7)

$$K^{t}(t_{1}, t_{2}) + K^{d}(d_{1}, d_{2}) + K^{c}(c_{1}, c_{2}),$$
 (8)

Semi-Additive Models

$$K^{d}(d_{1}, d_{2}) + K^{t}(t_{1}, t_{2}) \cdot K^{c}(c_{1}, c_{2}),$$
 (9)

$$(K^{t}(t_{1}, t_{2}) + K^{d}(d_{1}, d_{2})) \cdot K^{c}(c_{1}, c_{2}),$$
 (10)

Multiplicative Models

$$K^{t}(t_{1}, t_{2}) \cdot K^{d}(d_{1}, d_{2}),$$
 (11)

$$K^{t}(t_{1}, t_{2}) \cdot K^{d}(d_{1}, d_{2}) \cdot K^{c}(c_{1}, c_{2}).$$
 (12)

Outline

1 Introduction

2 Problem Formulation

3 Kernels

5 Conclusion

- 6435 smart meters
- 536 days (Jul 14, 2009 Dec 31, 2010)
- Half-hour sampling
- 3 groups: residential, SME, others

- 6435 smart meters
- 536 days (Jul 14, 2009 Dec 31, 2010)
- Half-hour sampling
- 3 groups: residential, SME, others

- 6435 smart meters
- 536 days (Jul 14, 2009 Dec 31, 2010)
- Half-hour sampling
- 3 groups: residential, SME, others

- 6435 smart meters
- 536 days (Jul 14, 2009 Dec 31, 2010)
- Half-hour sampling
- 3 groups: residential, SME, others

Pre-processing

- Removed two corrupted meters
- Corrected DST measurements
- Downsampled to 3-hour resolution
- Final dataset:
 - m = 6433 smart meters
 - $\ell = 4288$ time slots

Customer group	Meters	Sparsity
Residential	4225	0.028%
Industrial (SME)	485	0.035%
Others	1723	17%

Learning the Models

- Data split
 - 1 year (2920 obs.) used for training (80%) and validation (20%)
 - $\bullet~\sim$ 0.5 year (1368 obs.) used for testing

- Independent Kernel Ridge Regression using the 6 kernels
- Output Kernel Learning using MM2
 - 1 model for {residential} \cup {others}, p = 200 to fit in memory
 - 1 model for $\{SME\}$, full rank (p = 485)

Qualitative Analysis

Figure: Measured load (blue), indep. KRR (red) and multi-task OKL (black) forecasts for the aggregated demand (top), a single SME meter (middle), and a single residential meter (bottom).

Performance Metrics (1/2)

Given a group of meters \mathcal{G} and observation i, we define

• Absolute percentage error (APE)

$$\mathsf{APE}(i,\mathcal{G}) = 100 \left| \frac{\sum_{j \in \mathcal{G}_i} y_{ij} - \sum_{j \in \mathcal{G}_i} f_j(t_i, d_i, c_i)}{\sum_{j \in \mathcal{G}_i} y_{ij}} \right|, \qquad (13)$$

where G_i is the subset of meters with available observations at *i*.

Normalized absolute error (NAE)

$$\mathsf{NAE}(i,\mathcal{G}) = \frac{\sum_{j \in \mathcal{G}_i} |y_{ij} - f_j(t_i, d_i, c_i)|}{\sum_{j \in \mathcal{G}_i} y_{ij}},$$
 (14)

Performance Metrics (2/2)

• Mean absolute percentage error (MAPE)

$$\mathsf{MAPE}(\mathcal{G}) = \frac{1}{\# T} \sum_{i \in T} \mathsf{APE}(i, \mathcal{G}), \qquad (15)$$

• Mean normalized absolute error (MNAE)

$$\mathsf{MNAE}(\mathcal{G}) = \frac{1}{\# T} \sum_{i \in T} \mathsf{NAE}(i, \mathcal{G}).$$
(16)

۸

Prediction Accuracy (1/2)

- Multiplicative kernels outperform (semi-)additive models.
 - Multiplicative kernels lead to a stricter selection of training obs.
 - EUNITE winners discarded \geq 90% of the dataset.

Prediction Accuracy (1/2)

- Multiplicative kernels outperform (semi-)additive models.
 - Multiplicative kernels lead to a stricter selection of training obs.
 - EUNITE winners discarded \geq 90% of the dataset.
- Multi-task OKL outperforms independent kernel ridge regression
 - The multi-task approach efficiently exploits the similarities
 - 44% improvement of $\sigma_{\rm APE}$ for SME against 2nd best method

Prediction Accuracy (2/2)

Figure: p-values of Welch t-test between the overall accuracies of all methods on the CER dataset

Basis Load Profiles gk

Figure: CER Data: Typical load profiles displayed over the horizon of one month, obtained from a low-rank OKL model with p = 10.

Number of Parameters

In this experiment, the OKL model is 4.24 times more compact.

- Single-task: # params = # obs. = $\sum_{j=1}^{m} \ell_j \approx 1.3 \cdot 10^7$
- Multi-task OKL: # params = $(\ell + m)p \approx 3 \cdot 10^6$

Relationships between Smart Meters

Figure: CER data: entries of the normalized output kernel $\mathbf{L}_n \in \mathbb{R}^{m \times m}$ for a subset containing 50 residential and 50 SME (small or medium enterprise) customers. $(\mathbf{L}_n)_{ij} = \frac{\mathbf{L}_{ij}}{\sqrt{\mathbf{L}_{ij} \times \mathbf{L}_{jj}}}, \quad i, j = 1, \dots, m.$

Outline

1 Introduction

2 Problem Formulation

3 Kernels

G Conclusion

Contributions

- We formulated the problem of forecasting the demand measured on multiple lines of the network as a multi-task problem.
- We designed kernels able to capture the seasonal effects present in electricity demand data.
- We exposed the performance limits of the very popular additive models, showing that they are often outperformed by multiplicative kernel models.
- We showed how MTL can be used to gain insights and interpretability on real demand data

Thank You

- Any question?
- Contact details
 - Jean-Baptiste Fiot
 - jean-baptiste.fiot@centraliens.net