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Abstract—We explore the application of kernel-based multi-
task learning techniques to forecast the demand of electricity
measured on multiple lines of a distribution network. We show
that recently developed output kernel learning techniques are
particularly well suited to solve this problem, as they allow to
flexibly model the complex seasonal effects that characterize elec-
tricity demand data, while learning and exploiting correlations
between multiple demand profiles. We also demonstrate that
kernels with a multiplicative structure yield superior predictive
performance with respect to the widely adopted (generalized)
additive models. Our study is based on residential and industrial
smart meter data provided by the Irish Commission for Energy
Regulation (CER).

Index Terms—Electricity Demand Forecasting, Multi-Task
Learning, Output Kernel Learning

I. INTRODUCTION

Electricity cannot be stored efficiently in large quantities,
therefore it is critical to ensure that the amount generated at a
given time is sufficient to meet the load plus the losses while
not exceeding this amount significantly. Predictive methods
for accurately forecasting the demand of electricity have thus
become important tools that guide planning and operation of
utility companies. While electric load forecasting is a well-
established, several decades old research area in engineering,
new modeling problems keep appearing as technological and
legislative transformations affect the power industry. With the
advent of smart grids and meters, larger and richer sources
of data are becoming available, making it possible to build
more sophisticated models that enable more accurate billing
of electricity and dynamic pricing.

A variety of tools from time series analysis, statistics, and
more recently machine learning, have been employed for
electricity load forecasting. For an overview on the vast body
of available literature on the subject, we refer the reader to
the recent book by [1]. Classical techniques include linear and
non-linear regression models estimated by means of variants
of least squares fitting, and various types of ARMAX models
expressing the forecast as a function of previously observed
values of the load and possibly other weather or social vari-
ables. Techniques inspired by Artificial Intelligence research
such as expert systems, fuzzy logic, and neural networks have
also been applied to load forecasting. In particular, black-
box models based on neural networks have been extensively
analyzed, see the influential review by [2].

In recent years, Generalized Additive Models (GAM) [3]
have established themselves as state of the art tools for
electricity load forecasting [4], [5], [6], due to the existence

of efficient and scalable training algorithms and the inter-
pretability of the model, which allows to clearly visualize
the effect of individual variables on the load by means of
simple longitudinal plots. Meanwhile, kernel methods have
been employed with great success in the last decade. Already
back in 2001, a kernel-based Support Vector Regression (SVR)
approach was employed to win a competition on electricity
load forecasting [7] organized by EUNITE (European Network
on Intelligent Technologies for Smart Adaptive Systems).
Later on, various types of kernel-based regularization methods
and Support Vector Machines have been applied to predict the
demand of electricity, see for instance [8], [9], [10].

Most research articles on electricity load forecasting focus
on predicting a single time series representing the electricity
load aggregated over a large number of nodes of the electricity
network. For example, in [11], the authors investigate methods
that include scenario generation for long-term load forecasting.
Due to aggregation, such time series exhibit high regularity
and are therefore significantly easier to forecast than load
profiles at lower levels of the network. Nevertheless, making
forecasts of the loads at lower levels is becoming increasingly
feasible due to the availability of rich smart meter datasets,
therefore the problem is attracting considerable interest in the
industry.

Forecasting electricity demand at low levels of the network
(such as the demand of an individual household) presents
several challenges. First of all, it involves analyzing a much
larger number of time series, calling for scalable techniques
that can handle a very large amount of measurements. In
addition, demand profiles at lower levels of the electricity
network are much less regular and thus harder to predict. To
tackle these challenges, recent works have investigated the use
of clustering techniques for automatically aggregating multiple
load time series, reporting improved predictive performance
at aggregated level [12], [13], [14]. In [15], the authors
investigated the use of multi-task Gaussian process models
for the short-term power load forecast of a small number of
cities.

In this paper, we study the problem of mid-term electricity
load forecasting at the smart meter level, and we suggest
to solve it by means of kernel-based multi-task learning
techniques that can discover and take advantage of the re-
lationships between multiple profiles. Kernel based multi-task
learning has been studied in a variety of papers [16], [17],
[18], [19] while, in recent years, the problem of learning and
exploiting relationships between multiple tasks is a topic that
is attracting considerable attention in the machine learning
literature [20], [21], [22], [23], [24], [25], [26], [27], [28],
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[29].
Herein, we develop and compare a variety of kernel-based

models for medium-term electricity demand forecasting in
multiple nodes, with the goal of identifying the best way to
capture the complex seasonal effects that characterize such
demand patterns.

A. Contributions

This paper makes 3 main contributions.
• In Section II, we formulate the problem of forecasting the

demand in multiple nodes of the network as a multi-task
learning problem, illustrating the usefulness of jointly
learning and exploiting similarities between multiple load
profiles.

• In Section III, we design kernels specifically tailored to
capture the seasonal effects present in electricity load
data.

• In Section IV, we expose the performance limits of the
very popular additive models, showing that they are often
outperformed by multiplicative kernel models. We show
how recently developed multi-task learning techniques
can be used to gain insights and interpretability on real
demand data, while achieving state of the art predictive
performance. Our experimental analysis is based on data
provided by the Irish Commission for Energy Regulation
(CER).

II. ELECTRIC DEMAND FORECASTING AS A
MULTI-TASK LEARNING PROBLEM

A. General demand forecasting model

Electric demand forecasting aims at predicting the future
demand on one or multiple power lines of an electricity
network. Depending on how far ahead in time the forecast is
required, the corresponding estimation problem exhibits dif-
ferent characteristics, and influence decisions of significantly
different nature. It is therefore common to classify forecasting
problems in three categories: short-term forecasting (several
minutes up to one week ahead), medium-term forecasting (up
to 10 years ahead), and long-term forecasting (as far as several
decades ahead), see [1] for a more comprehensive discussion.

Forecasting models are built starting from datasets contain-
ing one or multiple time series, each of them representing the
demand measurement on a specific line in the network, ranging
from highly aggregated demands in the transmission network
down to the distribution network and to the demands of
individual users. Missing measurements and different sampling
rates contribute to make these data noisy and challenging
to analyze. Moreover, defective meters at a low level in the
network are hard to detect, and faulty meters can report wrong
measurements before being replaced.

Being mostly driven by human activity, a variety of temporal
patterns can be observed in the load data [30]. A variety of
additional features can be typically extracted from the data
or obtained from other sources and utilized to forecast the
electricity demand. For instance, the electricity consumption
is affected by weather conditions (particularly due to heating

and air-conditioning), therefore variables such as temperature,
humidity and irradiance are often taken into account by fore-
casting models. Economic indicators such as gross domestic
product can be used to model trends in long-term scenarios.
Finally, short-term forecasting models are typically based on
time series techniques, where auto-regressive lagged values of
the load itself are incorporated in the model and used to track
short-term trends and deviations from stationarity.

In summary, typical forecasts of the electricity demand may
depend on a variety of features that include time and calendar
variables, weather and economic conditions, previously ob-
served values of the load, and information about the node of
the network where the forecast is required. A general model
that takes into account the previously discussed features takes
the form

Forecast = f

 t, d, c︸ ︷︷ ︸
Time / Calendar

features

, yl, ul︸ ︷︷ ︸
Dynamic
features

, j, sj︸︷︷︸
Meter features

 , (1)

where the dependent variables are the following:

• t ∈ [0, 24) is the time of day expressed in hours,
• d ∈ {1, 2, . . . , 365, 366} is the day of the year,
• c is the type of day, e.g. Monday to Sunday, week-

day/weekend, holiday,
• yl is a real vector containing lagged values of the mea-

sured electric demand,
• ul is a real vector containing measurements of lagged

values of exogenous variables other than the load (such
as temperature),

• j is the meter ID in the electricity network, e.g. corre-
sponding to a specific device / customer / region,

• sj is a vector of features describing the characteristics
of the demand measured by the meter j, e.g. device /
customer / region type.

B. Solving multiple demand forecasting problems by kernel-
based multi-task regression

In this section, we analyze one of the many possible
multi-task learning problems that naturally appear within the
framework described in Section II-A, namely the problem
of simultaneously predicting the demand measured at several
power lines of the network. This amount to disaggregate the
overall dataset over the multiple smart meters (indexed by j)
and treat each one of them as a different learning task. We
briefly recall the standard setup of multi-task regression and
review the techniques that will be employed in Section IV to
solve this forecasting problem.

In the following, we focus on multi-variate (multi-task) re-
gression problems where the goal is to learn multiple functions
fj : X → R from multiple datasets of pairs (xij , yij) ∈ X×R.
Here, X is a set of input features, m denotes the number of
tasks, and `j the number of examples for the j-th task (i.e. `j
is the number of measurements recorded by the smart meter j).
Letting f : X × Rm denote the vector-valued function with
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components fj , we are going to search f by minimizing the
following regularization functional

R(f,L) =

m∑
j=1

`j∑
i=1

(yij − fj(xij)))2 + λ‖f‖2HL
. (2)

where λ > 0 is a regularization parameter, and HL is a
Reproducing Kernel Hilbert Space (RKHS) of vector-valued
functions with (matrix-valued) kernel

H(xi, xj) = K(xi, xj)L. (3)

Here, K : X × X → R is a positive semidefinite kernel
called input kernel, and the square matrix L ∈ Rm×m is the
output kernel matrix whose entries Ljk express the similarity
between the tasks (output components) j and k. In view of
the representer theorem, there exist functions f̂j minimizing
R(f,L) in the form:

f̂j(x) =
m∑

k=1

Ljk

`k∑
i=1

cikK(xik, x). (4)

We refer to [31] for more details about RKHS of vector-valued
functions and the corresponding representer theorem.

1) Fixing L = I (independent kernel ridge regression):
Expression (4) shows that inter-task transfer is possible only
when off-diagonal elements of the output kernel matrix are
different from zero. Indeed, by choosing L equal to the identity
matrix all the tasks are learned independently by solving a
standard kernel regularized least squares problem

f̂j = arg min
fj∈H

 `j∑
i=1

(yij − fj(xij))2 + λ‖fj‖2H

 , (5)

where H is the RKHS of scalar functions with kernel K. This
single-task baseline is referred to as independent kernel ridge
regression [32].

2) Learning L (output kernel learning): In this section, we
review a kernel-based multi-task regression approach called
low-rank Output Kernel Learning (OKL), recently developed
in [29]. In such approach, the functions fj and the output ker-
nel L are jointly optimized by solving the following problem

min
L∈Sm,p

+

min
f∈HL

R(f,L) + λtr(L), (6)

where Sm,p
+ is the cone of positive semidefinite matrices with

rank less than or equal to p. Instead of imposing a low-rank
constraint or regularizing the trace of the output kernel, other
type of regularizers could be tried, see e.g. [23], [33], [34].
The low-rank approach has the advantage of allowing us to
tightly control the memory required to store the models.

The representer theorem (4) still applies to the inner min-
imization problem of (6). By plugging the expression (4)
into (6), one obtains a functional that is convex quadratic
with respect to both the coefficients cik and L. Although
the resulting problem is not jointly convex, the alternating
minimization procedure described in [29] can be applied to
obtain a minimizer. An important aspect of the method is that,
by selecting the rank parameter p, is it possible to control the
overall number of parameters of the model, as well as the

memory requirements and the computation time to obtain a
solution. More specifically, letting A = ∪j ∪i {xij}, one can
show that the solution (6) can be rewritten as

f̂j(x) =

p∑
k=1

bjkgk(x), gk(x) =
∑̀
i=1

aikK(xi, x), (7)

where ` = #A, xi ∈ A, i = 1, . . . , `, and the coefficients
bjk form a low-rank factor of L. It is therefore sufficient to
store and optimize (`+m)p parameters, which can be much
smaller than

∑m
j=1 `j .

3) Computational complexity: When performing indepen-
dent kernel ridge regression (L is fixed as the identity matrix,
see Section II-B1), solving the forecasting problems for all
meters is trivially linear in the number of meters. When per-
forming output kernel learning (Section II-B2), the complexity
is also linear in the number of meters. This result is not as
obvious, and we refer the reader to [29] for details.

III. KERNELS FOR ELECTRICITY LOAD FORECASTING

In this section, we design kernels specifically tailored to
capture the seasonal effects present in electricity load data.
In order to define suitable kernels, let us have a look at
electricity demand patterns. The top panel of Fig. 1 shows
a typical profile for aggregated electricity load over several
years (data source: French Réseau de Transport d’Electricité1),
from which a clear yearly seasonal pattern can be observed,
with higher demand in winter and lower demand in the
summer. A closer look at this data also reveals typical weekly
(Fig. 1, middle panel) and daily (Fig. 1, bottom panel) profiles.
Correctly capturing these seasonal patterns is an crucial aspect
of the problem, which can be dealt with by properly extracting
and utilizing temporal and calendar features. The type of day
of the week can be also taken into account: the bottom panel
of Fig. 1 shows a specific week where all days have a similar
profile but a difference between week days and weekend can
be clearly noticed. Forecasting is particularly challenging on
public holidays, and different public holidays may exhibit
significantly different load profiles.

Given these observations, and using the same notations as
in Section II, we introduce kernels based on the time/calendar
features of model (1),
• Time-of-day kernel

Kt(t1, t2) = exp (−hT (|t1 − t2|)/σt) , (8)

• Day-of-year kernel

Kd(d1, d2) = exp (−hD(|d1 − d2|)/σd) , (9)

• Day-type kernel

Kc(c1, c2) =

{
1 if c1 = c2

0 if c1 6= c2.
, (10)

where hP (x) = min{x, P − x} is a change of variable that
yields P -periodic kernels over the square [0, P ]2. By observing
that the Fourier transform of exp(−|x|) is non-negative, it can

1http://clients.rte-france.com/lang/fr/visiteurs/vie/vie stats conso inst.jsp
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Fig. 1: Electric load data: yearly, weekly, and daily seasonal
patterns can be observed in the top, middle, and bottom panels,
respectively.

TABLE I: Number of meters and sparsity (percentage of
missing measurements) for each customer group in the Irish
CER dataset

Customer group Meters Sparsity

Residential 4225 0.028%
Industrial (SME) 485 0.035%
Others 1723 17%

be easily shown that periodized kernels such as Kt and Kd

are positive semidefinite, see [35]. In our experiment, σt and
σd were respectively set to 4 hours and 120 days. In order
to define K((t1, d1, c1), (t2, d2, c2)), we combine these three
kernels to define a variety of models

• Additive Models

Kt(t1, t2) +Kd(d1, d2) , (11)

Kt(t1, t2) +Kd(d1, d2) +Kc(c1, c2) , (12)

• Semi-Additive Models

Kd(d1, d2) +Kt(t1, t2) ·Kc(c1, c2) , (13)(
Kt(t1, t2) +Kd(d1, d2)

)
·Kc(c1, c2) , (14)

• Multiplicative Models

Kt(t1, t2) ·Kd(d1, d2) , (15)

Kt(t1, t2) ·Kd(d1, d2) ·Kc(c1, c2) , (16)

IV. EXPERIMENTAL VALIDATION ON SMART METER DATA

In this section, we focus on predicting the demand of
electricity measured on multiple power lines of an electricity
network. Specifically, we focus on medium-term forecasts of
multiple demands measured by smart meters, a multi-task
learning problem where each task corresponds to one smart
meter.

A. Data and pre-processing

We adopt data provided by the the Irish Commission for
Energy Regulation (CER) 2, containing electric load measure-
ments from 6435 smart meters, half-hourly sampled from July
14, 2009 to December 31, 2010 (536 days). These meters
include residential customers and small-to-medium industrial
sites. We consider a mid-term test scenario where the goal is
to forecast the load in multiple nodes over a time horizon of
171 days, using one year of measurements to build the model.
Due to the long forecasting horizon, dynamic features are not
available and are therefore dropped from the general model
in Eq. (1). Such model does not rely on recent measurements
of the load, therefore it is able to make predictions over an
arbitrarily long horizon. The load forecast for the j-th smart
meter is thus simply given by ŷ = fj(t, d, c), where fj are
the multiple functions to be learned, taking into account time
and calendar features.

From the original CER dataset, several pre-processing steps
were performed. The day of the year and time of the day
were extracted from the five-digit timestamps. In this dataset,
the time of day is an non-zero integer indexing the number
of half-hours, and therefore it should be normally in the set
{1, 2, . . . , 48}. Two meters containing time of days higher
than 50 half-hours were discarded, as it was unclear how to
interpret these measurements. The dataset also contains days
with 46 and 50 measurements and time of days up to 50.
These inconsistencies are caused by the start and the end of
daylight saving time (DST) and are easily fixable. When DST
starts in Ireland 3, the 1AM to 2AM hour get skipped, and
half-hourly time of day indices should be {1, 2, 5, 6, . . . , 48}.
When DST starts in Ireland, the 1AM to 2AM hour “hap-
pens twice”, and half-hourly time of day indices should
be {1, 2, 3, 4, 3, 4, 5, 6, . . . , 48}, instead of {1, 2, . . . , 50} as
found in the dataset. We then downsampled each time-series
from half-hourly sampling to 3-hour sampling, by averaging
available measurements for each time slot of 3 hours ([12AM,
3AM), [3AM, 6AM), etc) and a total of 8 measurements
per day. Our final dataset contains m = 6433 smart meters
sampled over ` = 4288 time slots. Characteristics of such
pre-processed dataset are summarized in Table I.

B. Quantitative analysis

1) Learning the models: We used one year (2920 downsam-
pled observations) for training and validation, and the remain-
ing 1368 observations for testing. In order to perform tuning
of the regularization parameter, we extracted a validation set
containing a subset of the original non-test data, obtained by
randomly choosing 20% time samples, equal for all the meters.

We trained independent kernel ridge regression models (see
Sec. II-B1) for each measured smart meter using all the kernels
from (11) to (16). We compare these models against a multi-
task learning approach that simultaneously performs estimates
for all the meters, and also allows us to exploit the available
meter grouping information in the dataset. Specifically, we

2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
3http://www.timeanddate.com/time/change/ireland/dublin
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trained two separate multi-task output kernel learning (OKL)
models (see Sec. II-B2): the first is trained over all the
residential meters (the union of meters labeled “residential”
and “others”), and the second over industrial meters (labeled
in the dataset as “SME” for “small or medium enterprise”).
The maximum rank constraint for the first model was set to
p = 200 to obtain a compact model that fits into memory,
while the OKL model for SME meters was trained with full
rank p = 485. We refer the reader to [29] for a discussion
on the effect of this parameter. Both OKL models utilize the
multiplicative input kernel (16), as it proves to give the highest
accuracy.

2) Performance metrics: Forecasting performance can be
evaluated for each time slot i = 1, . . . , ` and any arbitrary
group of meters G. For this purpose, let Gi denote the subset
of G for which measurements are available in the i-th time
slot. We define two different metrics in order to evaluate the
accuracy of the aggregate forecast and the accuracy of the
individual forecasts. Let us define

APE(i,G) = 100

∣∣∣∣∣
∑

j∈Gi yij −
∑

j∈Gi fj(ti, di, ci)∑
j∈Gi yij

∣∣∣∣∣ , (17)

NAE(i,G) =
∑

j∈Gi |yij − fj(ti, di, ci)|∑
j∈Gi yij

. (18)

APE(i,G) measures the absolute percentage error incurred
at time i when forecasting the aggregated demand using the
sum of the forecasts in G. On the other hand, NAE(i,G) is
the sum of the forecasting errors over individual tasks, relative
to the naive baseline of predicting fj(ti, di, ci) = 0 for all
i, j. Since the demand values yij are always non-negative, the
two metrics are undefined only for those groups on meters
for which the cumulative demand in the i-th time slot is
identically zero, or no measurements are available for any of
the meters. We compute the average and standard deviation
of these two metrics over all the observations in the test
period. In particular, we define the (aggregated) mean absolute
percentage error (MAPE) and the mean normalized absolute
error (MNAE)

MAPE(G) = 1

# T

∑
i∈T

APE(i,G) , (19)

MNAE(G) = 1

# T

∑
i∈T

NAE(i,G) . (20)

Noting the aggregate signal zi =
∑

j yij and forecast
of aggregate signal ẑi =

∑
j fj(ti, di, ci), one can obtain

MAPE = 100 1
# T

∑
i∈T |

zi−ẑi
zi
|. In other words, the MAPE

defined from Eq. (17) and (19) is the standard MAPE defini-
tion for the aggregate of meters in the group G.

We also compute the standard errors on the MAPE and
MNAE as the empirical standard deviations of, respectively,
APE and NAE, divided by the number of observations.
Finally, we report the p-values of the Welch t-test, computed
from the average and standard deviation of the previously
defined metrics, and the number of smart meters.

3) Results: Fig. 2 illustrates the challenges of medium-term
forecasting at low network level versus forecasting aggregated
demands. We analyze the measured load and the corresponding
forecast over a window of 5 weeks within the test period. In the
top panel, one can see the aggregated load and the correspond-
ing forecast obtained as the sum of all disaggregated forecasts
obtained using model (16). The kernel-based forecasts are
rather accurate overall, only slightly estimating the total load
during the Christmas week, a particularly problematic period
to predict. In the middle panel, the measured load for a single
SME meter is compared with the corresponding forecast. The
varying demand profiles of different days of the week are
captured rather well by the model. Again, there is a larger
error over the Christmas week, caused by a sudden drop of the
demand to a low baseline value (probably due to interruption
of business activities followed by a slow resumption in the
subsequent days). This leads the models to over-estimate the
load, though the model learned with a multi-task approach is
less affected. Finally, the bottom panel shows the electricity
demand of a residential customer, characterized by rapid vari-
ations with sharp consumption peaks and irregular patterns,
that make the forecast even more difficult.

Fig. 3 reports the performance of all methods over the full
set of 6433 smart meters, as well as disaggregated performance
measures over each group from Table I. We start by analyzing
the performance of the additive models, which are probably
the most widely adopted in the literature. By comparing the
performance of models (11) and (12), we can observe that
adding a constant bias specific to the type of the day of week
(kernel Kc) does not necessarily improve the accuracy of the
model. The overall MNAE and MAPE are in fact higher for
model (12). Semi-additive models where the type of day of
the week is utilized to switch between different profiles yields
a significant improvement in performance. The two semi-
additive models (13) and (14) achieve similar performance
over the groups residential and others. However, for the SME
customer group, model (14) is better in terms of both MNAE
and MAPE. In previous works such as [5], semi-additive
models of the form (13) have been proposed to switch between
different daily patterns, depending on the type of day. Interest-
ingly, our results show that in certain situations, such as when
modeling industrial customers, it is even better to switch the
overall sum of the daily pattern and the yearly pattern. We took
a step even further by utilizing fully multiplicative models (15)
and (16). The multiplicative model (15) pools over different
days of the week, while (16) learns independent models for
each day. While the former is not always better than the semi-
additive models, the latter significantly outperforms them. We
can conclude that a multiplicative kernel structure (16) is
the best at forecasting time series with yearly, weekly and
daily seasonal effects, both overall and for each customer
group. Such conclusion is aligned with recent results presented
in [36], where tensor product basis functions were utilized
to capture weekly and yearly seasonalities in the simpler
context of load forecasting for a single highly aggregated time
series. A further performance improvement can be obtained
by utilizing a multi-task learning approach, where correlation
between electricity demand behavior of multiple customers
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is learned and exploited. As Fig. 3 shows, the multi-task
OKL approach provides the lowest MNAE over all the meters
performance, residential and others, and second lowest MNAE
for SME (only 2% higher than the lowest for this group). The
multi-task learning approach also provides the lowest mean
aggregated MAPE, overall and for each customer groups.
Finally, the multi-task approach is more robust, as the temporal
standard deviation is the lowest for both NAE and APE.
Again, such robustness can be observed overall the customers
as well as for each customer group. In particular, it is worth
mentioning a 44% improvement of the standard deviation of
the APE for SME meters, compared to the best single task
model that uses the multiplicative model (16).

Fig. 4 presents the p-values of the Welch t-test, computed for
all pairs of models, for both the overall NAE and APE. Using
a threshold of α = 10−2, most models are statistically different
from one to each other. In particular, we notice that using
any method that uses a multiplicative kernel (Multiplicative
Model 1, Multiplicative Model 2 and Multi-Task OKL) are
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Fig. 4: p-values of Welch t-test between the overall accuracies
of all methods on the CER dataset

statistically superior to any listed method that uses an additive
or semi-additive kernel. Furthermore, the multi-Task OKL is
statistically better than all other methods in terms of MNAE,
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Fig. 5: CER data: entries of the normalized output kernel Ln

for a subset containing 50 ‘residential’ and 50 ‘SME (small
or medium enterprise)’ customers.

and than all methods except Multiplicative Model 2 in terms
of MAPE.

In addition to improving forecasting accuracy, the low-rank
multi-task learning model is significantly more compact in
terms of number of parameters. For all the single-task methods
(with additive, semi-additive and multiplicative kernels), the
number of parameters is equal to the overall number of training
observations

∑m
j=1 `j . In our experiment, this amounts to

about 13 million parameters (precisely 12785524 parameters).
The low-rank output kernel learning method models each
prediction function f̂j as a linear combination of p latent func-
tions, shared by all tasks (see Sec. II-B2). These p functions
gk can be seen as typical load profiles. As a consequence,
only (`+m)p parameters are required to learn the prediction
functions for all smart meters. In our experiment, this gave a
total of about 3 million parameters (precisely 3016310) thus
producing a model that is about 4.24 times more compact, in
addition to being more accurate.

C. Smart Meter Load Profile Analysis via Multi-Task OKL

In this Section, we evaluate additional benefits of using
the multi-task OKL approach for electric load forecasting
problems. For this section, we built a low-rank OKL model
using the data from all smart meters.

In order to visualize the relationships between several smart
meters, we define the normalized output kernel Ln ∈ Rm×m

as
(Ln)ij =

Lij√
Lii × Ljj

, i, j = 1, . . . ,m. (21)

Figure 5 shows the entries of the learnt normalized output
kernel Ln corresponding to a subset of nodes including 50
residential and 50 ‘SME (small or medium enterprise)’ meters,
where a correlation structure consistent with the labeling can
be observed.

A further possibility offered by the low-rank model is to
obtain a small set of p functions that generate all the estimated
tasks by linear combination, namely the functions gk (k =
1, . . . , p) in expression (7). In our scenario, these functions are
interpretable as ‘typical load profiles’. Figure 6 shows few of
them (p = 10) over the horizon of approximately one month,
revealing a variety of typical weekly and daily load patterns.

Jul 14, 09 Jul 18, 09 Jul 22, 09 Jul 26, 09 Jul 30, 09 Aug 03, 09 Aug 07, 09

Fig. 6: CER Data: Typical load profiles displayed over the
horizon of one month, obtained from a low-rank OKL model
with p = 10.

V. DISCUSSION AND CONCLUSIONS

Our analysis shows that kernel-based multi-task learning is
effective for the resolution of electric load forecasting prob-
lems. Focusing on the challenging problem of forecasting the
electric load of individual customers, we designed kernels that
take into account relevant multiple seasonality patterns. We
demonstrated the clear benefits of multiplicative kernel models
over additive or semi-additive models. Our results suggest
a new modeling direction, as opposed to the (generalized)
additive models, widely employed in the energy community.
We illustrated further performance gain made possible by
using a multi-task learning approach over a large number of
single-tasks baselines. While recent studies reported MAPE
around 3% for the short-term forecasting of an aggregated
signal of a few thousands of smart meters e.g. [13], our method
achieves a MAPE of 4% on a medium term forecasting
scenario, which is a much harder problem as neither auto-
regressive terms nor accurate weather forecasts are available.

The ideas and results presented in this paper open a wide
range of considerations. First of all, they suggest that elec-
tricity demand data can be used as natural test benchmarks
for multi-task learning methods. In addition, these problems
motivate developing new techniques that allow to incorporate
more complex task relationships structures taking into ac-
count, for instance, topological and physical constraints from
the electricity network. The development of online methods
that can automatically discover relationships between multi-
ple tasks seems to be particularly important for short-term
load forecasting scenarios. Finally, combining online multi-
task learning methods with topological network constraints
would allow to start tackling very complex scenarios such
as forecasting on a full electricity network with dynamic
reconfigurations.
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