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FASHION INSIGHTS CENTER

Zalando Fashion Insights Centre was founded with the aim of understanding fashion
through technology.

R&D work to organize the world’s fashion knowledge.

We work with one of the richest datasets in eCommerce; products, profiles,
customers, purchasing and returns history, online behavior, Web information and
social media data.
Three main teams:

Smart Product Platform

Customer Data Platform

Fashion Content Platform ® zalando



NLP TEAM

Not aiming to replace an stylist, but why not to
help him/her?

What is trending? What will people wear next
year?

Data driven decisions for the company.
Fashion text is very complex, challenges!
* Informality

«  Stylistic variance

* Rich domain-specific language



FASHION TEXT EXAMPLES

The new crop of fall bags is a sumptuous parade of rich jewel tones, from
Alexander Wang’ s lush, matte emerald to Lanvin’ s decorated sapphire, from
Jason WU’ s gleaming garnet to Marc Jacob’ s quilted topaz, and finally Judith
Leiber s bedazzled clutch, bursting with actual stones of amethyst,
adventurine, sodalite, and Austrian crystals. The styles cover as wide a range
as the palette.

Dries Van Noten’ s fall 2015 collection, unveiled yesterday at the Hotel de Ville
in central Paris, was an Asian - inspired feast , from imperial brocade coats
with Mongolian fur collars and khaki cotton duck trousers and work shirts with
militant simplicity to dragon-embroidered bomber jackets and bead-
embellished scenes of a rural Chinese village on voluminous skirts and
delicate silks.




DEEP LEARNING FOR NLP

Deep learning is having a transformative impact in many
areas where machine learning has been applied.

NLP was somewhat behind other fields in terms of
adopting deep learning for applications.

However, this has changed over the last few years,
thanks to the use of RNNSs, specifically LSTMs, as well as
word embeddings.

Distinct areas in which deep learning can be beneficial for
NLP tasks, such as in named entity recognition, machine

translation and language modelling, parsing, chunking, .-: ’-‘,',-.;. K

POS tagging, amongst others.

zalahdo



WORD EMBEDDINGS

. . AUDIO IMAGES TEXT
° Representing as ids.
[ = o |
- Encodings are arbitrary. B PiNe - B ; I
- No information about the relationship between words. l’g_i.
- Data SparSity- Audio Spectrogram Image pixels ngzc:ﬁgg?:li)gfo?;
* Better representation for words. PENSE DENSE

SPARSE
https://www.tensorflow.org/tutorials/word2vec
Words in a continuous vector space where semantically similar words are mapped
to nearby points.

- Learn dense embedding vectors.
- Skip-gram and CBOW
o CBOW predicts target words from the context. E.g., Zalando ?? Talk

O Skip-gram predicts source context-words from the target words. E.g., ?7?
Meetup ?7?

Standard preprocessing step for NLP.

Used also as a feature in supervised approaches (e.g., clustering)

Several parameters we can experiment with, e.g., the size of the word embedding
or the context window.

® zalando



T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)
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RECURRENT NEURAL NETWORKS
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Why not basic Deep Nets?

Traditional neural networks do not use information from the past, each
entry is independent.

This is fine for several applications, such as classifying images.

However, several applications, such as video, or language modelling,
rely on what has happened in the past to predict the future.

Recurrent Neural Networks (RNN) are capable of conditioning the model
on previous words in the corpus.

zalando



Language models

I
Language models compute the probability of

occurrence of a number of words in a particular
sequence.

First, it allows us to score arbitrary sentences based
on how likely they are to occur in the real world (useful
for machine translation).

A language model allows us to generate new text.
Problem with traditional approaches: only takes a fixed
window into account.

Recurrent neural networks do not use limited size of

context.

13 ® zalando
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Richard Socher 4/21/16 - Make use of sequential information.

T1y oy Tty Ty Tegdy -, LT *  Output is dependent on the previous
he = o (WhPhy + Wtz information.

S [l (%)

g = softmax(W ht) *  RNN shares the same parameter W for each

step, so less parameters we need to learn.

http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
14 ® zalando



target word

output likelihood

hidden state

input embedding

input word
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llisll llthell

llwhatll llisll

http://torch.ch/blog/2016/07/25/nce.html

"problem"

Ilthell
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one to one

RNN architectures

one to many many to one many to many many to many

t t 1 t AT t t 1

http://karpathy.github.io/2015/05/21/rmn-effectiveness/

® zalando
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RNNs (1)

In theory, RNNs are absolutely capable of handling such long-term dependencies.
Practice is "a bit” different.
Parameters are shared by all time steps in the network, the gradient at each output
depends not only on the calculations of the current time step, but also the previous
time steps.
Exploding gradients:

- Easier to spot.

«  Clip the gradient to a maximum
Vanishing gradients:

* Harder to identify

+ Initialization of the matrix to identity matrix

* Relus instead of sigmoid

®» zalando
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Long Short Term Memory (LSTMs)

In theory, RNNs can handle of handling such long-term dependencies.

The oversized mannish coats looked positively edible over the bun-
skimming dresses while combined with novelty knitwear such as
punk-like fisherman's sweaters. As other look, the ballet pink
Elizabeth and James jacket provides a cozy cocoon for the 20-year-
old to top off her ensemble of a T-shirt and Parker Smith jeans. But |

have to admit that my favorite is the bun-skimming dresses with the
??

However, in reality, they cannot.

LSTMs avoid the long-term dependency problem.

Remove or add information to the cell state, carefully regulated by
structures called gates.

Gates are a way to optionally let information through.

zalando



LSTMs

Input: Does z{Y) matter? Output/Exposure:
How much ¢® should be exposed? , . . .
AEY __f o Uto) o— p(t-1) E it = U(W(Z)xt + u’(l) ht—l) (Input gate)
2 —f o " o R - fi=moe(WDx +uDny_y) (Forget gate)
7 0) f—

New memory: Compute new memory 0t = ‘T(W(O)xt + u(o)ht—l) (Out'put/EXposure gate)
A o 7o Gt = tanh(W(C)xt - U(C)ht_l) (New memory cell)
o ct = froci_1+ 110G (Final memory cell)

A(t) (t)
. i hs = o0 o tanh(c¢)

(1)

Forget: Should ¢ be forgotten?
R ) o
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://cs224d.stanford.edu/lecture_notes/notes4.pdf
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HACK WEEK PROJECT

Our annual, week-long celebration of open
innovation and experimentation, where
technologists are free to work on inspiring,
inventive new projects for the business.

We were working on different Deep Learning
problems, with the available data that we
have.

We won the best software development award

Want to know some more? Read here and
here

® zalando
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Language modelling example

Fake or real?

Erdem Moralioglu tells WWD about his
Spring 2017 collection. They stand out and if
you aren't easy on wearing heels for a
scalloped cowgirl look for toting them over.

There was something so very interesting about
the idea, these 1650 nipped-in jackets with
these Deauville-y cropped trousers and these
sun hats.

® zalando



UPSKILLING AND CONSIDERATIONS IN
DATA SCIENCE DELIVERY

Have a look at our blogpost Sapphire Deep Learning Upskilling!
Compile resources.

Choose a course
Deep Learning by Google.

Narrow NLP Start

[ ] . . . . . o— p
NLP Stanford classes.
* Lectures Compile Choose Narrow and Papers and
. resources eoursea deeper pam:er; ! Hands on
«  Other related materials

Read papers, papers and more papers.

Success

Get hands on

22 ® zalando



®» zalando

THANKS!

ana.peleteiro@zalando.com

@PeleteiroAna
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