Deep Learning for Recommender Systems Machine Learning Dublin Meetup

Ernesto Diaz-Aviles Chief Scientist ernesto@libreai.com

2017-04-24

Why Recommender Systems?

Why Recommender Systems?

PERA NES INFORMACIÓ PREGUNTI AQUÍ

SWI .

-36

Recommender Systems Everywhere

Why Deep?

IM GENET Large Scale Visual Recognition Challenge

Shallow vs. Deep

TRADITIONAL APPROACH

The traditional approach uses fixed feature extractors.

DEEP LEARNING APPROACH

Deep Learning approach uses trainable feature extractors.

Deeper is better for computer vision

Does DL work for RecSys?

- CNN
- RNN
- DNN and AE

Convolutional Neural Networks CNNs

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional Neural Networks (CNN)

CNN for RecSys: Feature Learning to enhance Collaborative Filtering

Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized Ranking from implicit feedback. (AAAI'16).

CNN for RecSys: Feature Learning to Enhance Collaborative Filtering

Figure 2: AUC with varying dimensions.

Figure 3: AUC with training iterations (#factors=20).

Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized Ranking from implicit feedback. (AAAI'16).

CNN for RecSys: Deep content-based music recommendation

van den Oord, A. et al. Deep content-based music recommendation (NIPS 2013)

CNN for RecSys: Deep content-based music recommendation

Recommending music on Spotify with deep learning -- Sander Dieleman, 2014 http://benanne.github.io/2014/08/05/spotify-cnns.html

Recurrent Neural Networks RNNs

RNN

- Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

- Oriol Vinyals, Quoc Le. A Neural Conversational Model. Deep Learning Workshop ICML 2015.

Human: what is the purpose of life ? Machine: to serve the greater good . Human: what is the purpose of living ? Machine: to live forever .

Human: what is the purpose of existence ? **Machine:** to find out what happens when we get to the planet earth .

Human: where are you now ?

Machine: *i* 'm in the middle of nowhere .

Human: what is the purpose of dying ? **Machine:** to have a life.

Human: what is the purpose of being intelligent ?

Machine: to find out what it is .

Human: what is the purpose of emotions ? **Machine:** *i* don 't know .

RNN for RecSys: Session-based Recommendation

Architecture

- Input: item of the actual event
- Output: likelihood for every item for being the next one in the event stream

B. Hidasi, et.al. Session-based Recommendations with Recurrent Neural Networks. ICLR 2016.

RNN for RecSys: Multi-task Recommendation

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU: Multi-task Learning for Deep Text Recommendations. RecSys '16

RNN for RecSys: Multi-task Recommendation

Figure 3: Recall@M for the models trained with multi-task learning. x-axis is the value of $M \in [100]$

Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the GRU: Multi-task Learning for Deep Text Recommendations. RecSys '16

DNNs and Auto Encoders

DNN for RecSys: Google's Wide & Deep Models

Cheng et al. Wide & Deep Learning for Recommender Systems. DLRS @ RecSys 2016.

DNN for RecSys: Google's Wide & Deep Models

Table 1: Offline & online metrics of different models.Online Acquisition Gain is relative to the control.

Cheng et al. Wide & Deep Learning for Recommender Systems. DLRS @ RecSys 2016.

Auto Encoders for RecSys

Task: rating prediction. Metric: RMSE

	ML-1M	ML-10M	Netflix
BiasedMF	0.845	0.803	0.844
I-RBM	0.854	0.825	_
U-RBM	0.881	0.823	0.845
LLORMA	0.833	0.782	0.834
I-AutoRec	0.831	0.782	0.823

Sedhain et al. AutoRec: Autoencoders Meet Collaborative Filtering. (WWW '15 Companion)

Conclusion

- DL (DNN, AE, CNN, RNN) boosts recommendation performance
- CNNs ideal for content-based feature learning: ameliorate cold-start problem
- RNNs very powerful for sequence based recommendation, multi-modal learning, and order-aware distributed representations, trends forecast ...
- Is deeper better for RecSys ?

Beyond

- Model understanding:
 - Explanation
 - Exploration embedding semantics

- Specific Architectures for RecSys
- Recommendation Algorithmic Bias
- DL+RecSys beyond traditional tasks \rightarrow Innovative Applications
 - Machine as reviewers and critics
 - Personalized content generation: news articles, art, movies, songs, design, fashion, ...
 - Different verticals

0

Thank you!

Ernesto Diaz-Aviles ernesto@libreai.com libreAl Labs

Workshop on Deep Learning for Recommender Systems @ ACM RecSys 2017 http://dlrs-workshop.org/

Submission deadline: 22 June 2017

Credits: Material of this presentation is taken from excellent presentations and papers of great Deep Learning researchers and practitioners. All copyrights belong to their respective owners.